Skip to main content

Pediatrie PET: Indications and Value of Multimodal Imaging

  • Chapter
PET in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 170))

  • 1323 Accesses

Abstract

Magnetic resonance imaging (MRI) and positron emission tomography (PET) are diagnostic imaging modalities that allow visualization of morphological as well as functional features of different diseases in childhood. Both modalities are often used separately or even in competition. Some of the most important indications for both PET and MRI lie in the field of pediatrie oncology. The malignant diseases in children are leukemia, brain tumors, lymphomas, neuroblastoma, soft tissue sarcomas, Wilms’ tumor, and bone sarcomas. Apart from leukemia, correct assessment of tumor expansion with modern imaging techniques, mainly consisting of ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), is essential for cancer staging, for the choice of the best therapeutic approach, and for restaging after therapy or in recurrence [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Connolly LP, Drubach LA, Ted Trêves S (2002) Applications of nuclear medicine in pediatrie oncology. Clin Nucl Med 27:117–125

    Article  PubMed  Google Scholar 

  2. Schmidt GP, Baur-Melnyk A, Tiling R, Hahn K, Reiser MF, Schoenberg SO (2004) Comparison of high resolution whole-body MRI using parallel imaging and PET-CT. First experiences with a 32-channel MRI system. Radiologe 44:889–898

    PubMed  CAS  Google Scholar 

  3. Bloem JL, van der Woude HJ, Geirnaerdt M, Hogen-doorn PC, Taminiau AH, Hermans J (1997) Does magnetic resonance imaging make a difference for patients with musculoskeletal sarcoma? Br J Radiol 70:327–337

    PubMed  CAS  Google Scholar 

  4. Bredella MA, Caputo GR, Steinbach LS (2002) Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas. AJR Am J Roentgenol 179:1145–1150

    PubMed  Google Scholar 

  5. Antoch G, Vogt FM, Bockisch A, Ruehm SG (2004) Whole-body tumor staging: MRI or FDG-PET/CT? Radiologe 44:882–888

    Article  PubMed  CAS  Google Scholar 

  6. Gaa J, Rummeny EJ, Seemann MD (2004) Whole-body imaging with PET/MRI. Eur J Med Res 9:309–312

    PubMed  CAS  Google Scholar 

  7. Pfluger T, Schmied C, Porn U, Leinsinger G, Vollmar C, Dresel S, Schmid I, Hahn K (2003) Integrated imaging using MRI and 1231 metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatrie neuroblastoma. AJR Am J Roentgenol 181:1115–1124

    PubMed  Google Scholar 

  8. Czernin J (2002) Clinical applications of FDG-PET in oncology. Acta Med Austriaca 29:162–170

    Article  PubMed  CAS  Google Scholar 

  9. Alyafei S, Inoue T, Zhang H, Ahmed K, Oriuchi N, Sato N, Suzuki H, Endo K (1999) Image fusion system using PACS for MRI, CT, and PET images. Clin Positron Imaging 2:137–143

    Article  PubMed  Google Scholar 

  10. Hutton BF, Braun M (2003) Software for image registration: algorithms, accuracy, efficacy. Semin Nucl Med 33:180–192

    Article  PubMed  Google Scholar 

  11. Slomka PJ (2004) Software approach to merging molecular with anatomic information. J Nucl Med 45 [Suppl 1]:36S–45S

    PubMed  Google Scholar 

  12. Pelizzari CA, Chen GT, Speibring DR, Weichselbaum RR, Chen CT (1989) Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 13:20–26

    Article  PubMed  CAS  Google Scholar 

  13. Maes F, Collignon A, Vandermeulen D, Marchai G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    Article  PubMed  CAS  Google Scholar 

  14. Wells WM 3rd, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1:35–51

    Article  PubMed  Google Scholar 

  15. Skalski J, Wahl RL, Meyer CR (2002) Comparison of mutual information-based warping accuracy for fusing body CT and PET by 2 methods: CT mapped onto PET emission scan versus CT mapped onto PET transmission scan. J Nucl Med 43:1184–1187

    PubMed  Google Scholar 

  16. Cohade C, Osman M, Marshall LN, Wahl RN (2003) PET-CT: accuracy of PET and CT spatial registration of lung lesions. Eur J Nucl Med Mol Imaging 30:721–726

    PubMed  Google Scholar 

  17. Stokking R, Zubal IG, Viergever MA (2003) Display of fused images: methods, interpretation, and diagnostic improvements. Semin Nucl Med 33:219–227

    Article  PubMed  Google Scholar 

  18. Aquino SL, Asmuth JC, Alpert NM, Halpern EF, Fischman AJ (2003) Improved radiologie staging of lung cancer with 2-[18F]-fluoro-2-deoxy-D-glucose-positron emission tomography and computed tomography registration. J Comput Assist Tomogr 27:479–484

    Article  PubMed  Google Scholar 

  19. Cohade C, Wahl RL (2003) Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomographyclinical use, interpretation methods, diagnostic improvements. Semin Nucl Med 33:228–237

    Article  PubMed  Google Scholar 

  20. Coleman RE, Hawk TC, Hamblen SM, Cnmt, Laymon CM, Turkington TG (1999) Detection of recurrent brain tumor. Comparison of MR registered camerabased and dedicated PET images. Clin Positron Imaging 2:57–61

    Article  PubMed  Google Scholar 

  21. Dresel S, Grammerstorff J, Schwenzer K, Brinkbaumer K, Schmid R, Pfluger T, Hahn K (2003) [18FJFDG imaging of head and neck tumours: comparison of hybrid PET and morphological methods. Eur J Nucl Med Mol Imaging 30:995–1003

    Article  PubMed  CAS  Google Scholar 

  22. Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 33:205–218

    Article  PubMed  Google Scholar 

  23. Murphy M, O’Brien TJ, Morris K, Cook MJ (2001) Multimodality image-guided epilepsy surgery. J Clin Neurosci 8:534–538

    Article  PubMed  CAS  Google Scholar 

  24. So EL (2002) Role of neuroimaging in the management of seizure disorders. Mayo Clin Proc 77:1251–1264

    Article  PubMed  Google Scholar 

  25. Tsai CC, Tsai CS, Ng KK, Lai CH, Hsueh S, Kao PF, Chang TC, Hong JH, Yen TC (2003) The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynaecological cancers. Eur J Nucl Med Mol Imaging 30:1674–1683

    Article  PubMed  Google Scholar 

  26. Visvikis D, Ell PJ (2003) Impact of technology on the utilisation of positron emission tomography in lymphoma: current and future perspectives. Eur J Nucl Med Mol Imaging 30 [Suppl 1]: S106–S116

    PubMed  Google Scholar 

  27. Zhang W, Simos PG, Ishibashi H, Wheless JW, Castillo EM, Kim HL, Baumgartner JE, Sarkari S, Papanicolaou AC (2003) Multimodality neuroimaging evaluation improves the detection of subtle cortical dysplasia in seizure patients. Neurol Res 25:53–57

    Article  PubMed  CAS  Google Scholar 

  28. Anderson H, Price P (2000) What does positron emission tomography offer oncology? Eur J Cancer 36:2028–2035

    Article  PubMed  CAS  Google Scholar 

  29. Bar-Shalom R, Valdivia AY, Blaufox MD (2000) PET imaging in oncology. Semin Nucl Med 30:150–185

    Article  PubMed  CAS  Google Scholar 

  30. Czech N, Brenner W, Kampen WU, Henze E (2000) Diagnostic value of positron emission tomography (PET) in clinical oncology. Dtsch Med Wochenschr 125:565–567

    Article  PubMed  CAS  Google Scholar 

  31. Delbeke D, Martin WH (2001) Positron emission tomography imaging in oncology. Radiol Clin North Am 39:883–917

    Article  PubMed  CAS  Google Scholar 

  32. Mankoff DA, Bellon JR (2001) Positron-emission tomographic imaging of cancer: glucose metabolism and beyond. Semin Radiat Oncol 11:16–27

    Article  PubMed  CAS  Google Scholar 

  33. Scott AM (2001) Current status of positron emission tomography in oncology. Intern Med J 31:27–36

    Article  PubMed  CAS  Google Scholar 

  34. Brisse H, Ollivier L, Edeline V, Pacquement H, Michon J, Glorion C, Neuenschwander S (2004) Imaging of malignant tumours of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol 34:595–605

    Article  PubMed  Google Scholar 

  35. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, Schober O, Rummeny EJ (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236

    PubMed  CAS  Google Scholar 

  36. Franzius C, Daldrup-Link HE, Wagner-Bohn A, Sciuk J, Heindel WL, Jürgens H, Schober O (2002) FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13:157–160

    Article  PubMed  CAS  Google Scholar 

  37. Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF (2002) Evaluation of chemotherapy response in pediatrie bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 94:3277–3284

    Article  PubMed  CAS  Google Scholar 

  38. Hudson MM, Krasin MJ, Kaste SC (2004) PET imaging in pediatrie Hodgkin’s lymphoma. Pediatr Radiol 34:190–198

    Article  PubMed  Google Scholar 

  39. Montravers F, McNamara D, Landman-Parker J, Grahek D, Kerrou K, Younsi N, Wioland M, Leverger G, Talbot JN (2002) [(18)FJFDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging 29:1155–1165

    Article  PubMed  CAS  Google Scholar 

  40. O’Hara SM, Donnelly LF, Coleman RE (1999) Pediatrie body applications of FDG PET. AJR Am J Roentgenol 172:1019–1024

    PubMed  Google Scholar 

  41. Shulkin BL (2004) PET imaging in pediatrie oncology. Pediatr Radiol 34:199–204

    Article  PubMed  Google Scholar 

  42. Shulkin BL, Mitchell DS, Ungar DR, Prakash D, Dole MG, Castle VP, Hernandez RJ, Koeppe RA, Hutchinson RJ (1995) Neoplasms in a pediatrie population:2-[F-18]-fluoro-2-deoxy-D-glucose PET studies. Radiology 194:495–500

    PubMed  CAS  Google Scholar 

  43. Townsend DW, Cherry SR (2001) Combining anatomy and function: the path to true image fusion. Eur Radiol 11:1968–1974

    Article  PubMed  CAS  Google Scholar 

  44. Pfluger T, Vollmar C, Porn U, Schmid R, Dresel S, Leinsinger G, Schmid I, Winkler P, Fischer S, Hahn K (2002) Combined PET/MRI in cerebral and pediatrie diagnostics. Der Nuklearmediziner 25:122–127

    Article  Google Scholar 

  45. Hueltenschmidt B, Sautter-Bihl ML, Lang O, Maul FD, Fischer J, Mergenthaler HG, Bihl H (2001) Whole body positron emission tomography in the treatment of Hodgkin disease. Cancer 91:302–310

    Article  PubMed  CAS  Google Scholar 

  46. Torabi M, Aquino SL, Harisinghani MG (2004) Current concepts in lymph node imaging. J Nucl Med 45:1509–1518

    PubMed  Google Scholar 

  47. Ilias I, Pacak K (2004) Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab 89:479–491

    Article  PubMed  CAS  Google Scholar 

  48. Korholz D, Kluge R, Wickmann L, Hirsch W, Luders H, Lotz I, Dannenberg C, Hasenclever D, Dorffel W, Sabri O (2003) Importance of F18-fluorodeoxy-D-2-glucose positron emission tomography (FDG-PET) for staging and therapy control of Hodgkin’s lymphoma in childhood and adolescence-consequences for the GPOH-HD 2003 protocol. Onkologie 26:489–493

    Article  Google Scholar 

  49. Popperl G, Lang S, Dagdelen O, Jager L, Tiling R, Hahn K, Tatsch K (2002) Correlation of FDG-PET and MRI/ CT with histopathology in primary diagnosis, lymph node staging and diagnosis of recurrence of head and neck cancer. ROFO 174:714–120

    PubMed  CAS  Google Scholar 

  50. Blockmans D, Knockaert D, Maes A, De Caestecker J, Stroobants S, Bobbaers H, Mortelmans L (2001) Clinical value of [(18)F]fluoro-deoxyglucose positron emission tomography for patients with fever of unknown origin. Clin Infect Dis 32:191–196

    Article  PubMed  CAS  Google Scholar 

  51. Kapucu LO, Meltzer CC, Townsend DW, Keenan RJ, Luketich JD (1998) Fluorine-18-fluorodeoxyglucose uptake in pneumonia. J Nucl Med 39:1267–1269

    PubMed  CAS  Google Scholar 

  52. Kresnik E, Mikosch P, Gallowitsch HJ, Heinisch M, Lind P (2001) F-18 fluorodeoxyglucose positron emission tomography in the diagnosis of inflammatory bowel disease. Clin Nucl Med 26:867

    Article  PubMed  CAS  Google Scholar 

  53. Meiler J, Becker W (2001) Nuclear medicine diagnosis of patients with fever of unknown origin (FUO). Nuklearmedizin 40:59–70

    Google Scholar 

  54. Weiner GM, Jenicke L, Buchert R, Bohuslavizki KH (2001) FDG PET for the localization diagnosis in inflammatory disease of unknown origin-two case reports. Nuklearmedizin 40:N35–N38

    PubMed  CAS  Google Scholar 

  55. Barnett GH, Kormos DW, Steiner CP, Morris H (1993) Registration of EEG electrodes with three dimensional neuroimaging using a frameless, armless stereotactic wand. Stereotact Funct Neurosurg 61:32–38

    Article  PubMed  CAS  Google Scholar 

  56. Winkler PA, Vollmar C, Krishnan KG, Pfluger T, Brückmann H, Noachtar S (2000) Usefulness of 3-D reconstructed images of the human cerebral cortex for localization of subdural electrodes in epilepsy surgery. Epilepsy Res 41:169–178

    Article  PubMed  CAS  Google Scholar 

  57. Carreras JL, Perez-Castejon MJ, Jimenez AM, Domper M, Montz R (2000) Neuroimaging in epilepsy. Advances in SPECT and PET in epilepsy. Rev Neurol 30:359–363

    PubMed  CAS  Google Scholar 

  58. Matheja P, Kuwert T, Stodieck SR, Diehl B, Wolf K, Schuierer G, Ringelstein EB, Schober O (1998) PET and SPECT in medically non-refractory complex partial seizures. Temporal asymmetries of glucose consumption, benzodiazepine receptor density, and blood flow. Nuklearmedizin 37:221–226

    PubMed  CAS  Google Scholar 

  59. Noachtar S, Arnold S, Yousry TA, Bartenstein P, Werhahn KJ, Tatsch K (1998) Ictal technetium-99m ethyl cysteinate dimer single-photon emission tomo-graphic findings and propagation of epileptic seizure activity in patients with extratemporal epilepsies. Eur J Nucl Med 25:166–172

    Article  PubMed  CAS  Google Scholar 

  60. Oliveira AJ, da Costa JC, Hilario LN, Anselmi OE, Palmini A (1999) Localization of the epileptogenic zone by ictal and interictal SPECT with 99mTc-ethyl cysteinate dimer in patients with medically refractory epilepsy. Epilepsia 40:693–702

    Article  PubMed  CAS  Google Scholar 

  61. Pfluger T, Vollmar C, Wismuller A, Dresel S, Berger F, Suntheim P, Leinsinger G, Hahn K (2000) Quantitative comparison of automatic and interactive methods for MRI-SPECT image registration of the brain based on 3-dimensional calculation of error. J Nucl Med 41:1823–1829

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfluger, T., Hahn, K., Schmid, I. (2008). Pediatrie PET: Indications and Value of Multimodal Imaging. In: Dresel, S. (eds) PET in Oncology. Recent Results in Cancer Research, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31203-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31203-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31202-4

  • Online ISBN: 978-3-540-31203-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics