Skip to main content

Signals and Targets Triggered by Self-Incompatibility in Plants: Recognition of “Self” Can Be Deadly

  • Chapter
  • 2747 Accesses

Abstract

Plants often respond to stimuli with dramatic rearrangements of their actin cytoskeleton. Identification of the signals and transduction machinery that lead to changes in actin dynamics and organization is therefore of considerable interest. The self-incompatibility (SI) response in the field poppy, Papaver rhoeas L., involves signal-mediated inhibition of pollen tube growth in response to interaction with incompatible S proteins. This triggers larges increases in [Ca2+]i and downstream a number of signalling components and targets are modified in incompatible pollen. We have observed dramatic alterations to the actin cytoskeleton in response to SI and established that this involves massive and sustained actin depolymerization. We have begun to identify and characterize several actin-binding proteins, including profilin and gelsolin, that may cooperate to transduce the signal from a Ca2+ wave into destruction of the cytoskeletal network that is essential for tip growth. Recently, we identified a role for programmed cell death (PCD) signalling cascades being triggered in SI and that a caspase-like activity is involved in mediating irreversible pollen tube inhibition. Our data suggest that there is evidence for crosstalk between the SI-induced signalling cascades. We are currently investigating whether the signalling cascades for actin alterations and PCD are linked and whether the actin cytoskeleton functions as a sensor of cellular stress and can initiate PCD. Our current knowledge of the signalling cascade in P. rhoeas pollen therefore involves both early and late responses that work in concert to ensure that pollen does not effect fertilization. Early cessation of tip growth is mediated by destruction of the actin cytoskeleton, and this appears to cross-talk with a subsequent PCD cascade that commits the pollen to die.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrain C, Martin SJ (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 26:390–397

    Article  PubMed  CAS  Google Scholar 

  • Allwood EG, Smertenko AP, Hussey PJ (2001) Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Lett 499:97–100

    Article  PubMed  CAS  Google Scholar 

  • Cardenas L, Vidali L, Dominguez J, Perez H, Sanchez F, Hepler PK, Quinto C (1998) Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol 116:871–877

    Article  CAS  Google Scholar 

  • Cheung AY, Wang H, Wu HM (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    Article  PubMed  CAS  Google Scholar 

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    Article  PubMed  CAS  Google Scholar 

  • Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death. J Biol Chem 279:779–787

    Article  PubMed  CAS  Google Scholar 

  • de Graaf BHJ, Knuiman BA, Derksen J, Mariani C (2003) Characterization and localization of the transmitting tissue-specific PELPIII proteins of Nicotiana tabacum. J Exp Bot 54:55–63

    Article  PubMed  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:S84–97

    Article  PubMed  CAS  Google Scholar 

  • Eun SO, Lee Y (1997) Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiol 115:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Jänicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10:76–100

    Article  PubMed  CAS  Google Scholar 

  • Foote H, Ride J, Franklin-Tong V, Walker E, Lawrence M, Franklin F (1994) Cloning and expression of a distinctive class of self-incompatibility (S) gene fromPapaver rhoeas L. Proc Natl Acad Sci USA 91:2265–2269

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE (1999a) Signaling in pollination. Curr Opin Plant Biol 2:490–495

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE (1999b) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE, Franklin FCH (2003) Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Sci 8:598–605

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE, Franklin FCH (2003) The different mechanisms of gametophytic self-incompatibility. Philos Trans R Soc Lond Ser B Biol Sci 358:1025–1032

    Article  CAS  Google Scholar 

  • Franklin-Tong VE, Lawrence MJ, Franklin FCH (1988) An in vitro bioassay for the stigmatic product of the self-incompatibility gene in Papaver rhoeas L. New Phytol 110:109–118

    Article  Google Scholar 

  • Franklin-Tong VE, Ride JP, Franklin FCH (1995)Recombinant stigmatic self-incompatibility (S-) protein elicits a Ca2+ transient in pollen of Papaver rhoeas. Plant J 8:299–307

    Article  CAS  Google Scholar 

  • Franklin-Tong VE, Hackett G, Hepler PK (1997) Ratio-imaging of Ca2+ i in the self-incompatibility response in pollen tubes of Papaver rhoeas. Plant J 12:1375–1386

    Article  CAS  Google Scholar 

  • Franklin-Tong VE, Ride JP, Read ND, Trewavas AJ, Franklin FCH (1993) The self-incompatibility response in Papaver rhoeas is mediated by cytosolic free calcium. Plant J 4:163–177

    Article  CAS  Google Scholar 

  • Franklin-Tong VE, Drøbak BK, Allan AC, Watkins P, Trewavas AJ (1996) Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell 8:1305–1321

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE, Holdaway-Clarke TL, Straatman KR, Kunkel JG, Hepler PK (2002) Involvement of extracellular calciuminflux in the self-incompatibility response of Papaver rhoeas. Plant J 29:333–345

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A, Emons AMC (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A, Snowman BN, Emons AMC, Franklin-Tong VE (2000) Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell 12:1239–1252

    Article  PubMed  CAS  Google Scholar 

  • Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11:2349–2364

    Article  PubMed  CAS  Google Scholar 

  • Gourlay CW, Ayscough KR (2005) Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci 118:2119–2132

    Article  PubMed  CAS  Google Scholar 

  • Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR (2004) A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 164:803–809

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Vernoud V, Fu Y, Yang Z (2003) ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54:93–101

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169:127–138

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Hiscock SJ, McInnis SM (2003) Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends Plant Sci 8:606–613

    Article  PubMed  CAS  Google Scholar 

  • Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Holdaway-Clarke TL, Feijo JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010

    Article  PubMed  CAS  Google Scholar 

  • Howard TH, Oresajo CO (1985) A method for quantifying F-actin in chemotactic peptide activated neutrophils — study of the effect of Tboc peptide. Cell Motil Cytoskel 5:545–557

    Article  CAS  Google Scholar 

  • Huang S, Blanchoin L, Chaudhry F, Franklin-Tong VE, Staiger CJ (2004) A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J Biol Chem 279:23364–23375

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78:763–781

    PubMed  CAS  Google Scholar 

  • Jiang X, Wang X (2004) Cytochrome c-mediated apoptosis. Annu Rev Biochem 73:87–106

    Article  PubMed  CAS  Google Scholar 

  • Jordan ND, Franklin FCH, Franklin-Tong VE (2000) Evidence for DNA fragmentation triggered in the self-incompatibility response in pollen of Papaver rhoeas. Plant J 23:471–479

    Article  PubMed  CAS  Google Scholar 

  • Kao T-h, Tsukamoto T (2004) The molecular and genetic basis of S-RNase-based self-incompatibility. Plant Cell 16:S72–83

    Article  PubMed  CAS  Google Scholar 

  • Kayalar C, Ord T, Testa MP, Zhong LT, Bredesen DE (1996) Cleavage of actin by interleukin 1beta-converting enzymeto reverse DNase I inhibition. Proc Natl Acad Sci USA 93:2234–2238

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Mollet J-C, Dong J, Zhang K, Park S-Y, Lord EM (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci USA 100:16125–16130

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi I, Kobayashi Y, Yamaoka N, Kunoh H (1992) Recognition of a pathogen and a nonpathogen by barley coleoptile cells. 3. Responses of microtubules and actin-filaments in barley coleoptile cells to penetration attempts. Can J Bot 70:1815–1823

    Article  Google Scholar 

  • Kobayashi Y, Kobayashi I, Kunoh H (1993) Recognition of a pathogen and a nonpathogen by barley coleoptile cells. 2. Alteration of cytoplasmic strands in coleoptile cells caused by the pathogen, Erysiphe graminis and the nonpathogen, E. pisi, prior to their penetration. Physiol Mol Plant Path 43:243–254

    Article  Google Scholar 

  • Kohno T, Shimmen T (1987) Ca2+-induced fragmentation of actin-filaments in pollen tubes. Protoplasma 141:177–179

    Article  CAS  Google Scholar 

  • Kohno T, Shimmen T (1988) Mechanism of Ca2+ inhibition of cytoplasmic streaming in lily pollen tubes. J Cell Sci 91:501–509

    Google Scholar 

  • Korichneva I, Hammerling U (1999) F-actin as a functional target for retro-retinoids: a potential role in anhydroretinol-triggered cell death. J Cell Sci 112:2521–2528

    PubMed  CAS  Google Scholar 

  • Kovar DR, Drøbak BK, Staiger CJ (2000) Maize profilin isoforms are functionally distinct. Plant Cell 12:583–598

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama H, Fukuda H (2002) Developmental programmed cell death in plants. Curr Opin Plant Biol 5:568–573

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347

    Article  PubMed  CAS  Google Scholar 

  • Levee MG, Dabrowska MI, Lelli JL Jr, Hinshaw DB (1996) Actin polymerization and depolymerization during apoptosis in HL-60 cells. Am J Physiol Cell Physiol 271:C1981–1992

    CAS  Google Scholar 

  • Lillie SH, Brown SS (1994) Immunofluorescence localization of the unconventionalmyosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J Cell Biol 125:825–842

    Article  PubMed  CAS  Google Scholar 

  • Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104

    Article  PubMed  CAS  Google Scholar 

  • McCurdy DW, Kovar DR, Staiger CJ (2001) Actin and actin-binding proteins in higher plants. Protoplasma 215:89–104

    Article  PubMed  CAS  Google Scholar 

  • Messerli M, Danuser G, Robinson K (1999) Pulsatile influxes of H+, K+ and Ca2+ lag growth pulses of Lilium longiflor um pollen tubes. J Cell Sci 112:1497–1509

    PubMed  CAS  Google Scholar 

  • Messerli MA, Creton R, Jaffe LF, Robinson KR (2000) Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev Biol 222:84–98

    Article  PubMed  CAS  Google Scholar 

  • Miller DD, Callaham DA, Gross DJ, Hepler PK (1992) Free Ca2+ gradient in growing pollen tubes of Lilium. J Cell Sci 101:7–12

    CAS  Google Scholar 

  • Miller DD, De Ruijter NCA, Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–154

    Article  CAS  Google Scholar 

  • Morley SC, Sun GP, Bierer BE (2003) Inhibition of actin polymerization enhances commitment to and execution of apoptosis induced by withdrawl of trophic support. J Cell Biochem 88:1066–1076

    Article  CAS  Google Scholar 

  • Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256:12–18

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Brosche M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, Keinanen M, Saarma M, Scheel D, Kangasjarvi J (2005) Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 Mutant. Plant Physiol 137:1092–1104

    Article  PubMed  CAS  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  PubMed  CAS  Google Scholar 

  • Rao JY, Jin YS, Zheng Q, Cheng J, Tai J, Hemstreet GP III (1999) Alterations of the actin polymerization status as an apoptotic morphological effector in HL-60 cells. J Cell Biochem 75:686–698

    Article  PubMed  CAS  Google Scholar 

  • Rathore KS, Cork RJ, Robinson KR (1991) A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol 148:612–619

    Article  PubMed  CAS  Google Scholar 

  • Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  PubMed  CAS  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2003) Signals and targets of the self-incompatibility response in pollen of Papaver rhoeas. J Exp Bot 54:141–148

    Article  PubMed  CAS  Google Scholar 

  • Rudd JJ, Franklin F, Lord JM, Franklin-Tong VE (1996) Increased phosphorylation of a 26-kD pollen protein is induced by the self-incompatibility response in Papaver rhoeas. Plant Cell 8:713–724

    Article  PubMed  CAS  Google Scholar 

  • Rudd JJ, Osman K, Franklin FCH, Franklin-Tong VE (2003) Activation of a putative MAP kinase in pollen is stimulated by the self-incompatibility (SI) response. FEBS Lett 547: 223–227

    Article  PubMed  CAS  Google Scholar 

  • Samaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bogre L, Baluska F, Hirt H (2002) Involvement of the mitogenactivated protein kinase SIMK in regulation of root hair tip growth. EMBO J 21:3296–3306

    Article  PubMed  CAS  Google Scholar 

  • Sanchez AM, Bosch M, Bots M, Nieuwland J, Feron R, Mariani C (2004) Pistil factors controlling pollination. Plant Cell 16:S98–106

    Article  PubMed  CAS  Google Scholar 

  • Smertenko AP, Jiang C-J, Simmons NJ, Weeds AG, Davies DR, Hussey PJ (1998) Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J 14:187–193

    Article  PubMed  CAS  Google Scholar 

  • Snowman BN, Kovar DR, Shevchenko G, Franklin-Tong VE, Staiger CJ (2002) Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell 14:2613–2626

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ (2000) Signalling to the actin cytoskeleton in plants. Annu Rev Plant Phys Plant Mol Biol 51:257–288

    Article  CAS  Google Scholar 

  • Staiger CJ, Hussey PJ (2004) Actin and actin-modulating proteins. In: Hussey PJ (ed) The plant cytoskeleton in cell differentiation and development, Blackwell, Oxford, pp 32–80

    Google Scholar 

  • Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signalling. Annu Rev Biochem 69: 217–245

    Article  PubMed  CAS  Google Scholar 

  • Swidzinski JA, Sweetlove LJ, Leaver CJ (2002) A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana. Plant J 30:431–446

    Article  PubMed  CAS  Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    PubMed  Google Scholar 

  • Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12:2534–2545

    PubMed  CAS  Google Scholar 

  • Woltering EJ, van der Bent A, Hoeberichts FA (2002) Do plant caspases exist? Plant Physiol 130:1764–1769

    Article  PubMed  CAS  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen-tube growth. Nature 392:818–821

    Article  PubMed  CAS  Google Scholar 

  • Yang K-Y, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741–746

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14:S375–388

    PubMed  CAS  Google Scholar 

  • Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion — an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Liu Y, Klessig DF (2000) Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J 23:339–347

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomas, S.G., Huang, S., Staiger, C.J., Franklin-Tong, V.E. (2006). Signals and Targets Triggered by Self-Incompatibility in Plants: Recognition of “Self” Can Be Deadly. In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_6

Download citation

Publish with us

Policies and ethics