Skip to main content

Multiple-Valued Computing by Photon-Coupled, Photoswitchable Proteins

  • Conference paper
  • First Online:
Recent Advances in Technology Research and Education (INTER-ACADEMIA 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 53))

Included in the following conference series:

Abstract

In this work, we discuss the applicability of photon-coupled, photoswitchable proteins in multi-valued computing circuits. The proposed operational principle is based on photoswitchable proteins, capable of switching between more than two forms when subjected to light with well-defined frequencies. The molecules must be able to emit light with specific frequencies, determined by their forms (e.g. fluorescent photoswitchable proteins) in order to enable photo-coupling between neighboring proteins. According to our considerations such protein arrangements are potentially suitable for the realization of low power-consuming, terahertz-frequency, nanoscale, multiple-valued logic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayes, B.: Third base. Am. Sci. 89, 490–494 (2001)

    Article  Google Scholar 

  2. Yoeli, M., Rosenfeld, G.: Logical design of ternary switching circuits. IEEE Trans. Electron. Comput. EC-14(1), 19–29 (1965)

    Article  Google Scholar 

  3. Current, K.W.: Current-mode CMOS multiple valued logic circuits. IEEE J. Solid-State Circuits 29(2), 95–107 (1994)

    Article  Google Scholar 

  4. Dubrova, E.: Multiple-valued logic synthesis and optimization. In: The Springer International Series in Engineering and Computer Science, vol. 654, pp. 89–114 (2002)

    Google Scholar 

  5. Freitas, D.A., Current, K.W.: A quaternary logic encoder-decoder circuit design using CMOS. In: Proceeding International Symposium on Multiple-Valued Logic, pp. 190–195 (1983)

    Google Scholar 

  6. Freitas, D.A., Current, K.W.: A CMOS current comparator circuit. Electron. Len. 19(17), 695–697 (1983)

    Article  Google Scholar 

  7. Lin, H.C.: Resonant tunneling diodes for multivalued digital applications. In: Proceeding International Symposium on Multiple-Valued Logic, pp. 188–195 (1994)

    Google Scholar 

  8. Jin, N., et al.: Tri-state logic using vertically integrated Si-SiGe resonant interband tunneling diodes with double NDR. Electron Dev. Lett. 25, 646–648 (2004)

    Article  Google Scholar 

  9. de Silva, A.P., James, M.R., McKinney, B.O.F., Pears, D.A., Weir, S.M.: Molecular computational elements encode large populations of small objects. Nat. Mater. 5, 787–789 (2006)

    Article  Google Scholar 

  10. de Silva, A.P., Uchiyama, S.: Molecular logic and computing. Nat. Nanotechnol. 2, 399–410 (2007)

    Article  Google Scholar 

  11. Li, E.Y., Marzari, N.: Conductance switching and many-valued logic in porphyrin assemblies. J. Phys. Chem. Lett. 4(18), 3039–3044 (2013)

    Article  Google Scholar 

  12. Zhou, X.X., Lin, M.Z.: Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Curr. Opin. Chem. Biol. 17(4), 682–690 (2013)

    Article  Google Scholar 

  13. Bourgeois, D., Adam, V.: Reversible photoswitching in fluorescent proteins: a mechanistic view. IUBMB Life 64(6), 482–491 (2012)

    Article  Google Scholar 

  14. Ando, R., Mizuno, H., Miyawaki, A.: Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004)

    Article  Google Scholar 

  15. Rakos, B.: Simulation of Coulomb-coupled, protein-based logic. J. Autom. Mob. Robot. Intell. Syst. 3(4), 46–48 (2009)

    Google Scholar 

  16. Rakos, B.: Coulomb-coupled, protein-based computing arrays. Adv. Mater. Res. 2011(222), 181–184 (2011). https://doi.org/10.4028/www.scientific.net/AMR.222.181

    Article  Google Scholar 

  17. Rakos, B.: Modeling of dipole-dipole-coupled, electric field-driven, protein-based computing architectures. Int. J. Circuit Theory Appl. 2015(43), 60–72 (2015). https://doi.org/10.1002/cta.1924

    Article  Google Scholar 

  18. Rakos, B.: Pulse-driven, photon-coupled, protein-based logic circuits. Adv. Intell. Syst. Comput. 519, 123–127 (2016)

    Article  Google Scholar 

  19. Rakos, B.: Photon-coupled, photoswitchable protein-based OR, NOR logic gates. Adv. Intell. Syst. Comput. 660, 99–103 (2017)

    Article  Google Scholar 

  20. Xu, D., Phillips, J.C., Schulten, K.: Protein response to external electric fields: relaxation, hysteresis, and echo. J. Phys. Chem. 100, 12108–12121 (1996). https://doi.org/10.1021/jp960076a

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Rakos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rakos, B. (2019). Multiple-Valued Computing by Photon-Coupled, Photoswitchable Proteins. In: Laukaitis, G. (eds) Recent Advances in Technology Research and Education. INTER-ACADEMIA 2018. Lecture Notes in Networks and Systems, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-99834-3_17

Download citation

Publish with us

Policies and ethics