Skip to main content

Inflammasomes and Autoinflammation

  • Chapter
  • First Online:
Textbook of Autoinflammation

Abstract

Inflammasomes are large intracellular multi-protein polymeric complexes comprised of sensors, adaptor proteins and caspases. As innate immune sensors capable of recognizing and rapidly responding to pathogen and metabolic danger signals, inflammasomes act as key modulators of initial immune responses. This chapter focuses on the known inflammasome complexes, how they assemble into a molecular platform for caspase-1 activation and ultimately lead to the release of pro-inflammatory cytokines in the context of the innate immune response. A brief discussion of the role for the inflammasomes in disease is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AIM2:

Absent in melanoma 2

ALR:

AIM2-like receptor

ANA:

Antinuclear antibody

ASC:

Apoptosis related speck-like protein containing CARD

ATP:

Adenosine triphosphate

Bid:

BH3 interacting-domain death agonist

CAPS:

Cryopyrin-associated periodic syndromes

CARD:

Caspase activation and recruitment domain

CRP:

C-reactive protein

DAMP:

Damage associated molecular patterns

FADD:

Fas-associated death domain

FCAS:

Familial cold autoinflammatory syndrome

FIIND:

Function to find domain

FMF:

Familial Mediterranean fever

GTP:

Guanosine-5′-triphosphate

GWAS:

Genome-wide association study

ICE:

Interleukin-1β converting enzyme

IFN:

Interferon

IGIF:

Interferon-gamma inducing factor

IL:

Interleukin

LDL:

Low density lipoprotein

LPS:

Lipopolysaccharide

LRRs:

Leucine-rich-repeats

MAS:

Macrophage-activation syndrome

MDP:

Muramyl-dipeptide

MSU:

Monosodium urate

NAIP:

NLR family, apoptosis inhibitory protein

NASH:

Nonalcoholic steatohepatitis

NBS:

Nucleotide binding site

NEK:

Nima-related kinase

NF-ĸB:

Nuclear factor–ĸB

NLR:

NOD-like receptor

NLRC:

NLR family CARD domain-containing protein

NOD:

Nucleotide-binding oligomerization domain

NOMID:

Neonatal-onset multisystem inflammatory disease

PAMP:

Pathogen-associated molecular patterns

PRR:

Pattern-recognition receptors

PYD:

Pyrin domain

ROS:

Reactive oxygen species

SNP:

Single-nucleotide polymorphism

TLR:

Toll-like receptor

References

  1. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.

    Article  CAS  PubMed  Google Scholar 

  2. Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem. 2002;277(24):21119–22.

    Article  CAS  PubMed  Google Scholar 

  3. Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol. 2003;4(2):95–104.

    Article  CAS  PubMed  Google Scholar 

  4. Ting JP, Lovering RC, Alnemri ES, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28(3):285–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397–411.

    Article  CAS  PubMed  Google Scholar 

  6. Chae JJ, Komarow HD, Cheng J, et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell. 2003;11(3):591–604.

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Manji GA, Grenier JM, et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem. 2002;277(33):29874–80.

    Article  CAS  PubMed  Google Scholar 

  8. Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004;117(5):561–74.

    Article  CAS  PubMed  Google Scholar 

  9. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319–25.

    Article  CAS  PubMed  Google Scholar 

  10. Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 2003;171(11):6154–63.

    Article  CAS  PubMed  Google Scholar 

  11. Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E. The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol. 2015;10:395–424.

    Article  CAS  PubMed  Google Scholar 

  12. Bertin J, DiStefano PS. The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ. 2000;7(12):1273–4.

    Article  CAS  PubMed  Google Scholar 

  13. Martinon F, Hofmann K, Tschopp J. The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol. 2001;11(4):R118–20.

    Article  CAS  PubMed  Google Scholar 

  14. Richards N, Schaner P, Diaz A, et al. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J Biol Chem. 2001;276(42):39320–9.

    Article  CAS  PubMed  Google Scholar 

  15. Fairbrother WJ, Gordon NC, Humke EW, et al. The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci. 2001;10(9):1911–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu T, Rojas A, Ye Y, Godzik A. Homology modeling provides insights into the binding mode of the PAAD/DAPIN/pyrin domain, a fourth member of the CARD/DD/DED domain family. Protein Sci. 2003;12(9):1872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liepinsh E, Barbals R, Dahl E, Sharipo A, Staub E, Otting G. The death-domain fold of the ASC PYRIN domain, presenting a basis for PYRIN/PYRIN recognition. J Mol Biol. 2003;332(5):1155–63.

    Article  CAS  PubMed  Google Scholar 

  18. Hiller S, Kohl A, Fiorito F, et al. NMR structure of the apoptosis- and inflammation-related NALP1 pyrin domain. Structure. 2003;11(10):1199–205.

    Article  CAS  PubMed  Google Scholar 

  19. Eliezer D. Folding pyrin into the family. Structure. 2003;11(10):1190–1.

    Article  CAS  PubMed  Google Scholar 

  20. Harton JA, Linhoff MW, Zhang J, Ting JP. Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J Immunol. 2002;169(8):4088–93.

    Article  CAS  PubMed  Google Scholar 

  21. Gumucio DL, Diaz A, Schaner P, et al. Fire and ICE: the role of pyrin domain-containing proteins in inflammation and apoptosis. Clin Exp Rheumatol. 2002;20(4 Suppl 26):S45–53.

    CAS  PubMed  Google Scholar 

  22. Manji GA, Wang L, Geddes BJ, et al. PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-kappa B. J Biol Chem. 2002;277(13):11570–5.

    Article  CAS  PubMed  Google Scholar 

  23. Dowds TA, Masumoto J, Chen FF, Ogura Y, Inohara N, Nunez G. Regulation of cryopyrin/Pypaf1 signaling by pyrin, the familial Mediterranean fever gene product. Biochem Biophys Res Commun. 2003;302(3):575–80.

    Article  CAS  PubMed  Google Scholar 

  24. Masumoto J, Taniguchi S, Ayukawa K, et al. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem. 1999;274(48):33835–8.

    Article  CAS  PubMed  Google Scholar 

  25. Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell. 2014;156(6):1193–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15(8):727–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 2015;25(12):1285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71.

    Article  CAS  PubMed  Google Scholar 

  29. Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.

    Article  CAS  PubMed  Google Scholar 

  30. Denes A, Lopez-Castejon G, Brough D. Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis. 2012;3:e338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lamkanfi M, Kanneganti TD, Van Damme P, et al. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics. 2008;7(12):2350–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Walsh JG, Logue SE, Luthi AU, Martin SJ. Caspase-1 promiscuity is counterbalanced by rapid inactivation of processed enzyme. J Biol Chem. 2011;286(37):32513–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–6.

    Article  CAS  PubMed  Google Scholar 

  34. Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997;386(6625):619–23.

    Article  CAS  PubMed  Google Scholar 

  35. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11(12):1136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol. 2013;16(3):319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stoffels M, Zaal R, Kok N, van der Meer JW, Dinarello CA, Simon A. ATP-induced IL-1beta specific secretion: true under stringent conditions. Front Immunol. 2015;6:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fernandes-Alnemri T, Wu J, Yu JW, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–604.

    Article  CAS  PubMed  Google Scholar 

  40. Stein R, Kapplusch F, Heymann MC, et al. Enzymatically inactive procaspase 1 stabilizes the ASC pyroptosome and supports pyroptosome spreading during cell division. J Biol Chem. 2016;291(35):18419–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem. 2007;282(50):36321–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yu J, Nagasu H, Murakami T, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A. 2014;111(43):15514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.

    Article  CAS  PubMed  Google Scholar 

  44. Belizario JE, Alves J, Garay-Malpartida M, Occhiucci JM. Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif. Curr Protein Pept Sci. 2008;9(3):210–20.

    Article  CAS  PubMed  Google Scholar 

  45. Eldridge MJG, Sanchez-Garrido J, Hoben GF, Goddard PJ, Shenoy AR. The atypical ubiquitin E2 conjugase UBE2L3 is an indirect caspase-1 target and controls IL-1beta secretion by inflammasomes. Cell Rep. 2017;18(5):1285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baroja-Mazo A, Martin-Sanchez F, Gomez AI, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014;15(8):738–48.

    Article  CAS  PubMed  Google Scholar 

  47. Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–21.

    Article  CAS  PubMed  Google Scholar 

  48. Knodler LA, Crowley SM, Sham HP, et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe. 2014;16(2):249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD. Caspase-4 is required for activation of inflammasomes. J Immunol. 2012;188(4):1992–2000.

    Article  CAS  PubMed  Google Scholar 

  50. Holzinger D, Kessel C, Omenetti A, Gattorno M. From bench to bedside and back again: translational research in autoinflammation. Nat Rev Rheumatol. 2015;11(10):573–85.

    Article  CAS  PubMed  Google Scholar 

  51. Finger JN, Lich JD, Dare LC, et al. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem. 2012;287(30):25030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bruey JM, Bruey-Sedano N, Luciano F, et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell. 2007;129(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  53. Faustin B, Lartigue L, Bruey JM, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 2007;25(5):713–24.

    Article  CAS  PubMed  Google Scholar 

  54. Witola WH, Mui E, Hargrave A, et al. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells. Infect Immun. 2011;79(2):756–66.

    Article  CAS  PubMed  Google Scholar 

  55. Chavarria-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog. 2016;12(12):e1006052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kummer JA, Broekhuizen R, Everett H, et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem. 2007;55(5):443–52.

    Article  CAS  PubMed  Google Scholar 

  57. Zhong FL, Mamai O, Sborgi L, et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell. 2016;167(1):187–202.e17.

    Article  CAS  PubMed  Google Scholar 

  58. Soler VJ, Tran-Viet KN, Galiacy SD, et al. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis. J Med Genet. 2013;50(4):246–54.

    Article  CAS  PubMed  Google Scholar 

  59. Grandemange S, Sanchez E, Louis-Plence P, et al. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis. 2017;76(7):1191–8.

    Article  CAS  PubMed  Google Scholar 

  60. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29(3):301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoffman HM, Wanderer AA, Broide DH. Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol. 2001;108(4):615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koonin EV, Aravind L. The NACHT family—a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci. 2000;25(5):223–4.

    Article  CAS  PubMed  Google Scholar 

  63. Feldmann J, Prieur AM, Quartier P, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71(1):198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McCall SH, Sahraei M, Young AB, et al. Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J Bone Miner Res. 2008;23(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  65. Shigeoka AA, Mueller JL, Kambo A, et al. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol. 2010;185(10):6277–85.

    Article  CAS  PubMed  Google Scholar 

  66. Duncan JA, Bergstralh DT, Wang Y, et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A. 2007;104(19):8041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stehlik C, Fiorentino L, Dorfleutner A, et al. The PAAD/PYRIN-family protein ASC is a dual regulator of a conserved step in nuclear factor kappaB activation pathways. J Exp Med. 2002;196(12):1605–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O’Connor W Jr, Harton JA, Zhu X, Linhoff MW, Ting JP. CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-kappa B suppressive properties. J Immunol. 2003;171(12):6329–33.

    Article  PubMed  Google Scholar 

  69. Duncan JA, Gao X, Huang MT, et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol. 2009;182(10):6460–9.

    Article  CAS  PubMed  Google Scholar 

  70. Fujisawa A, Kambe N, Saito M, et al. Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. 2007;109(7):2903–11.

    CAS  PubMed  Google Scholar 

  71. Willingham SB, Allen IC, Bergstralh DT, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 2009;183(3):2008–15.

    Article  CAS  PubMed  Google Scholar 

  72. Willingham SB, Bergstralh DT, O’Connor W, et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe. 2007;2(3):147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287(43):36617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kawashima A, Karasawa T, Tago K, et al. ARIH2 ubiquitinates NLRP3 and negatively regulates NLRP3 inflammasome activation in macrophages. J Immunol. 2017;199(10):3614–22.

    Article  CAS  PubMed  Google Scholar 

  75. Hernandez-Cuellar E, Tsuchiya K, Hara H, et al. Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J Immunol. 2012;189(11):5113–7.

    Article  CAS  PubMed  Google Scholar 

  76. Song N, Liu ZS, Xue W, et al. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol Cell. 2017;68(1):185–97.e6.

    Article  CAS  PubMed  Google Scholar 

  77. Stutz A, Kolbe CC, Stahl R, et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J Exp Med. 2017;214(6):1725–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41(12):1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barbera-Cremades M, Baroja-Mazo A, Gomez AI, Machado F, Di Virgilio F, Pelegrin P. P2X7 receptor-stimulation causes fever via PGE2 and IL-1beta release. FASEB J. 2012;26(7):2951–62.

    Article  CAS  PubMed  Google Scholar 

  80. He Y, Zeng MY, Yang D, Motro B, Nunez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016;530(7590):354–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shi H, Wang Y, Li X, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17(3):250–8.

    Article  CAS  PubMed  Google Scholar 

  82. Gurung P, Anand PK, Malireddi RK, et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 2014;192(4):1835–46.

    Article  CAS  PubMed  Google Scholar 

  83. Inohara N, Ogura Y, Nunez G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol. 2002;5(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  84. Chamaillard M, Girardin SE, Viala J, Philpott DJ. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol. 2003;5(9):581–92.

    Article  CAS  PubMed  Google Scholar 

  85. Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72.

    Article  CAS  PubMed  Google Scholar 

  86. Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol. 2004;14(21):1929–34.

    Article  CAS  PubMed  Google Scholar 

  87. Hoffman HM, Brydges SD. Genetic and molecular basis of inflammasome-mediated disease. J Biol Chem. 2011;286(13):10889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoffman HM, Wright FA, Broide DH, Wanderer AA, Kolodner RD. Identification of a locus on chromosome 1q44 for familial cold urticaria. Am J Hum Genet. 2000;66(5):1693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Muckle TJ, Wellsm. Urticaria, deafness, and amyloidosis: a new heredo-familial syndrome. Q J Med. 1962;31:235–48.

    CAS  PubMed  Google Scholar 

  90. Hashkes PJ, Lovell DJ. Recognition of infantile-onset multisystem inflammatory disease as a unique entity. J Pediatr. 1997;130(4):513–5.

    CAS  PubMed  Google Scholar 

  91. de Koning HD, van Gijn ME, Stoffels M, et al. Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J Allergy Clin Immunol. 2015;135(2):561–4.

    Article  PubMed  CAS  Google Scholar 

  92. De Nardo D, Latz E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol. 2011;32(8):373–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Villani AC, Lemire M, Fortin G, et al. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet. 2009;41(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  94. Centola M, Wood G, Frucht DM, et al. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood. 2000;95(10):3223–31.

    CAS  PubMed  Google Scholar 

  95. Diaz A, Hu C, Kastner DL, et al. Lipopolysaccharide-induced expression of multiple alternatively spliced MEFV transcripts in human synovial fibroblasts: a prominent splice isoform lacks the C-terminal domain that is highly mutated in familial Mediterranean fever. Arthritis Rheum. 2004;50(11):3679–89.

    Article  CAS  PubMed  Google Scholar 

  96. Matzner Y, Abedat S, Shapiro E, et al. Expression of the familial Mediterranean fever gene and activity of the C5a inhibitor in human primary fibroblast cultures. Blood. 2000;96(2):727–31.

    CAS  PubMed  Google Scholar 

  97. Papin S, Cazeneuve C, Duquesnoy P, Jeru I, Sahali D, Amselem S. The tumor necrosis factor alpha-dependent activation of the human mediterranean fever (MEFV) promoter is mediated by a synergistic interaction between C/EBP beta and NF kappaB p65. J Biol Chem. 2003;278(49):48839–47.

    Article  CAS  PubMed  Google Scholar 

  98. Masumoto J, Dowds TA, Schaner P, et al. ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys Res Commun. 2003;303(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  99. Waite AL, Schaner P, Hu C, et al. Pyrin and ASC co-localize to cellular sites that are rich in polymerizing actin. Exp Biol Med (Maywood). 2009;234(1):40–52.

    Article  CAS  Google Scholar 

  100. Hesker PR, Nguyen M, Kovarova M, Ting JP, Koller BH. Genetic loss of murine pyrin, the Familial Mediterranean Fever protein, increases interleukin-1beta levels. PLoS One. 2012;7(11):e51105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chae JJ, Cho YH, Lee GS, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity. 2011;34(5):755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu H, Yang J, Gao W, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513(7517):237–41.

    Article  CAS  PubMed  Google Scholar 

  103. Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci U S A. 2016;113(33):E4857–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Masters SL, Lagou V, Jeru I, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med. 2016;8(332):332ra45.

    Article  PubMed  CAS  Google Scholar 

  105. International_FMF_Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell. 1997;90(4):797–807.

    Article  Google Scholar 

  106. Moghaddas F, Llamas R, De Nardo D, et al. A novel Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to Familial Mediterranean Fever. Ann Rheum Dis. 2017;76(12):2085–94.

    Article  CAS  PubMed  Google Scholar 

  107. Zhao Y, Yang J, Shi J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596–600.

    Article  CAS  PubMed  Google Scholar 

  108. Miao EA, Alpuche-Aranda CM, Dors M, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7(6):569–75.

    Article  CAS  PubMed  Google Scholar 

  109. Miao EA, Mao DP, Yudkovsky N, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010;107(7):3076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Qu Y, Misaghi S, Newton K, et al. NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med. 2016;213(6):877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sutterwala FS, Flavell RA. NLRC4/IPAF: a CARD carrying member of the NLR family. Clin Immunol. 2009;130(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  112. Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10):1140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Volker-Touw CM, de Koning HD, Giltay JC, et al. Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br J Dermatol. 2017;176(1):244–8.

    Article  CAS  PubMed  Google Scholar 

  114. Kawasaki Y, Oda H, Ito J, et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol. 2017;69(2):447–59.

    Article  CAS  PubMed  Google Scholar 

  115. Levy M, Shapiro H, Thaiss CA, Elinav E. NLRP6: a multifaceted innate immune sensor. Trends Immunol. 2017;38(4):248–60.

    Article  CAS  PubMed  Google Scholar 

  116. Chen GY, Liu M, Wang F, Bertin J, Nunez G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011;186(12):7187–94.

    Article  CAS  PubMed  Google Scholar 

  117. Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wlodarska M, Thaiss CA, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156(5):1045–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mehta R, Neupane A, Wang L, Goodman Z, Baranova A, Younossi ZM. Expression of NALPs in adipose and the fibrotic progression of non-alcoholic fatty liver disease in obese subjects. BMC Gastroenterol. 2014;14:208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Gieger C, Radhakrishnan A, Cvejic A, et al. New gene functions in megakaryopoiesis and platelet formation. Nature. 2011;480(7376):201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Glorioso N, Herrera VL, Didishvili T, et al. Sex-specific effects of NLRP6/AVR and ADM loci on susceptibility to essential hypertension in a Sardinian population. PLoS One. 2013;8(10):e77562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Okada K, Hirota E, Mizutani Y, et al. Oncogenic role of NALP7 in testicular seminomas. Cancer Sci. 2004;95(12):949–54.

    Article  CAS  PubMed  Google Scholar 

  123. Radian AD, Khare S, Chu LH, Dorfleutner A, Stehlik C. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides. Mol Immunol. 2015;67(2 Pt B):294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pinheiro AS, Proell M, Eibl C, Page R, Schwarzenbacher R, Peti W. Three-dimensional structure of the NLRP7 pyrin domain: insight into pyrin-pyrin-mediated effector domain signaling in innate immunity. J Biol Chem. 2010;285(35):27402–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Radian AD, de Almeida L, Dorfleutner A, Stehlik C. NLRP7 and related inflammasome activating pattern recognition receptors and their function in host defense and disease. Microbes Infect. 2013;15(8–9):630–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Khare S, Dorfleutner A, Bryan NB, et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity. 2012;36(3):464–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou Y, Shah SZ, Yang L, Zhang Z, Zhou X, Zhao D. Virulent Mycobacterium bovis Beijing strain activates the NLRP7 inflammasome in THP-1 macrophages. PLoS One. 2016;11(4):e0152853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Murdoch S, Djuric U, Mazhar B, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38(3):300–2.

    Article  CAS  PubMed  Google Scholar 

  129. Messaed C, Akoury E, Djuric U, et al. NLRP7, a nucleotide oligomerization domain-like receptor protein, is required for normal cytokine secretion and co-localizes with Golgi and the microtubule-organizing center. J Biol Chem. 2011;286(50):43313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mahadevan S, Wen S, Wan YW, et al. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet. 2014;23(3):706–16.

    Article  CAS  PubMed  Google Scholar 

  131. Soellner L, Begemann M, Degenhardt F, Geipel A, Eggermann T, Mangold E. Maternal heterozygous NLRP7 variant results in recurrent reproductive failure and imprinting disturbances in the offspring. Eur J Hum Genet. 2017;25(8):924–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fiorentino L, Stehlik C, Oliveira V, Ariza ME, Godzik A, Reed JC. A novel PAAD-containing protein that modulates NF-kappa B induction by cytokines tumor necrosis factor-alpha and interleukin-1beta. J Biol Chem. 2002;277(38):35333–40.

    Article  CAS  PubMed  Google Scholar 

  133. Williams KL, Taxman DJ, Linhoff MW, Reed W, Ting JP. Cutting edge: monarch-1: a pyrin/nucleotide-binding domain/leucine-rich repeat protein that controls classical and nonclassical MHC class I genes. J Immunol. 2003;170(11):5354–8.

    Article  CAS  PubMed  Google Scholar 

  134. Pinheiro AS, Eibl C, Ekman-Vural Z, Schwarzenbacher R, Peti W. The NLRP12 pyrin domain: structure, dynamics, and functional insights. J Mol Biol. 2011;413(4):790–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lich JD, Williams KL, Moore CB, et al. Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol. 2007;178(3):1256–60.

    Article  CAS  PubMed  Google Scholar 

  136. Borghini S, Tassi S, Chiesa S, et al. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum. 2011;63(3):830–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jeru I, Duquesnoy P, Fernandes-Alnemri T, et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci U S A. 2008;105(5):1614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jeru I, Le Borgne G, Cochet E, et al. Identification and functional consequences of a recurrent NLRP12 missense mutation in periodic fever syndromes. Arthritis Rheum. 2011;63(5):1459–64.

    Article  CAS  PubMed  Google Scholar 

  139. Allen IC, Wilson JE, Schneider M, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity. 2012;36(5):742–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen L, Wilson JE, Koenigsknecht MJ, et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol. 2017;18(5):541–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Linz BM, Neely CJ, Kartchner LB, et al. Innate immune cell recovery is positively regulated by NLRP12 during emergency hematopoiesis. J Immunol. 2017;198(6):2426–33.

    Article  CAS  PubMed  Google Scholar 

  142. Gharagozloo M, Mahvelati TM, Imbeault E, et al. The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis. J Neuroinflammation. 2015;12:198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458(7237):509–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237):514–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S. AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol. 2013;33(5):925–37.

    Article  PubMed  CAS  Google Scholar 

  146. Dombrowski Y, Peric M, Koglin S, et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med. 2011;3(82):82ra38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Kopfnagel V, Wittmann M, Werfel T. Human keratinocytes express AIM2 and respond to dsDNA with IL-1beta secretion. Exp Dermatol. 2011;20(12):1027–9.

    Article  CAS  PubMed  Google Scholar 

  148. Ting JP, Duncan JA, Lei Y. How the noninflammasome NLRs function in the innate immune system. Science. 2010;327(5963):286–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori Broderick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Broderick, L. (2019). Inflammasomes and Autoinflammation. In: Hashkes, P., Laxer, R., Simon, A. (eds) Textbook of Autoinflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-98605-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98605-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98604-3

  • Online ISBN: 978-3-319-98605-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics