Skip to main content

Entropy Reduction for the Correlation-Enhanced Power Analysis Collision Attack

  • Conference paper
  • First Online:
Book cover Advances in Information and Computer Security (IWSEC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11049))

Included in the following conference series:

Abstract

Side Channel Attacks are an important attack vector on secure AES implementations. The Correlation-Enhanced Power Analysis Collision Attack by Moradi et al. [MME10] is a powerful collision attack that exploits leakage caused by collisions in between S-Box computations of AES. The attack yields observations from which the AES key can be inferred. Due to noise, an insufficient number of collisions, or errors in the measurement setup, the attack does not find the correct AES key uniquely in practice, and it is unclear how to determine the key in such a scenario. Based on a theoretical analysis on how to quantify the remaining entropy, we derive a practical search algorithm. Both our theoretical analysis and practical experiments show that even in a setting with high noise or few available traces we can either successfully recover the full AES key or reduce its entropy significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The attack can be extended to other key sizes in a straight-forward manner by targeting a second AES round [MME10].

  2. 2.

    Since one key byte cannot be determined by the algorithm, the accurate remaining entropy is more properly \(\log _2(A_{16})+8\).

  3. 3.

    Note that the miss for \(N=8000\) and 16 \(\rightarrow \) 1 in Table 4 is precisely due to the nondeterministic behavior of Algorithm 1, as illustrated in Example 1.

References

  1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s). In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_4

    Chapter  Google Scholar 

  2. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_26

    Chapter  Google Scholar 

  3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  4. Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_3

    Chapter  Google Scholar 

  5. Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_32

    Chapter  Google Scholar 

  6. Canright, D., Batina, L.: A very compact “Perfectly Masked” S-box for AES. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 446–459. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_27

    Chapter  Google Scholar 

  7. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved collision-correlation power analysis on first order protected AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_4

    Chapter  Google Scholar 

  8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  9. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and more efficient rank estimation for side-channel security assessment. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_6

    Chapter  Google Scholar 

  10. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21

    Chapter  Google Scholar 

  11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  12. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  13. Ledig, H., Muller, F., Valette, F.: Enhancing collision attacks. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 176–190. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_13

    Chapter  Google Scholar 

  14. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_9

    Chapter  Google Scholar 

  15. Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation of the key rank distribution in the context of side channel evaluations. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 548–572. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_20

    Chapter  MATH  Google Scholar 

  16. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting Keys in Parallel After a Side Channel Attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_13

    Chapter  MATH  Google Scholar 

  17. Moradi, A., Standaert, F.: Moments-correlating DPA. In: Proceedings of 2016 TIS SEC Workshop, pp. 5–15 (2016)

    Google Scholar 

  18. National Institute of Standards and Technology: FIPS PUB 197. Advanced Encryption Standard, Technical report (2001)

    Google Scholar 

  19. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17

    Chapter  MATH  Google Scholar 

  20. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_12

    Chapter  MATH  Google Scholar 

  21. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_16

    Chapter  Google Scholar 

  22. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key enumeration algorithm and its application to side-channel attacks. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_25

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Sven Freud for creating the circuit board for power analysis, and Tobias Senger for his help with implementing the masking scheme. We also thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wiemers, A., Klein, D. (2018). Entropy Reduction for the Correlation-Enhanced Power Analysis Collision Attack. In: Inomata, A., Yasuda, K. (eds) Advances in Information and Computer Security. IWSEC 2018. Lecture Notes in Computer Science(), vol 11049. Springer, Cham. https://doi.org/10.1007/978-3-319-97916-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97916-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97915-1

  • Online ISBN: 978-3-319-97916-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics