Skip to main content

Band Gap Engineering of CdTe Quantum Dots by Hg Alloying in Infrared Region

  • Conference paper
  • First Online:
The Physics of Semiconductor Devices (IWPSD 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 215))

Included in the following conference series:

  • 3004 Accesses

Abstract

We synthesized Hg alloyed CdTe quantum dots (Cd1−xHgxTe) using hydrothermal route. N-acetyl-cysteine is used as the capping agent for water dispersed Cd1−xHgxTe (x = 0, 0.05, 0.1 and 0.5) quantum dots. The diameter of the synthesized quantum dots is 3.8 ± 0.5 nm, as estimated from high resolution transmission electron micrographs. The mercury molar fraction modified band gap engineering is demonstrated with band gap changing from 2.5 eV for CdTe quantum dots to 1.25 eV for Cd0.5Hg0.5Te.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.T. Seo, J. Han, T. Lim, K.H. Lee, J. Hwang, H. Yang, S. Ju, Fully transparent quantum dot light-emitting diode integrated with graphene anode and cathode. ACS Nano 8, 12476–12482 (2014)

    Article  Google Scholar 

  2. Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi, G. Chen, Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal. Chem. 84, 8378–8382 (2012)

    Article  Google Scholar 

  3. A.J. Nozik, Quantum dot solar cells. Phys. E Low-Dimens. Syst. Nanostructures 14, 115–120 (2002)

    Article  ADS  Google Scholar 

  4. S.V. Kershaw, M. Harrison, A.L. Rogach, A. Kornowski, Development of IR-emitting colloidal II-VI quantum-dot materials. IEEE J. Sel. Top. Quantum Electron. 6, 534–543 (2000)

    Article  ADS  Google Scholar 

  5. S. Keuleyan, E. Lhuillier, V. Brajuskovic, P. Guyot-Sionnest, Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 5, 489–493 (2011)

    Article  ADS  Google Scholar 

  6. M.T. Harrison, S.V. Kershaw, M.G. Burt, A. Eychmüller, H. Weller, A.L. Rogach, Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 69, 355–360 (2000)

    Article  Google Scholar 

  7. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)

    Article  Google Scholar 

  8. A.P. Alivisatos, Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge DST for financial assistance through project DST/INT/ISR/P-12/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambesh Dixit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahu, A., Tirosh, S., Zaban, A., Hiremath, K., Dixit, A. (2019). Band Gap Engineering of CdTe Quantum Dots by Hg Alloying in Infrared Region. In: Sharma, R., Rawal, D. (eds) The Physics of Semiconductor Devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-97604-4_187

Download citation

Publish with us

Policies and ethics