Skip to main content

Deep CRF-Graph Learning for Semantic Image Segmentation

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Abstract

We show that conditional random fields (CRFs) with learned heterogeneous graphs outperforms its pre-designated homogeneous counterparts with heuristics. Without introducing any additional annotations, we utilize four deep convolutional neural networks (CNNs) to learn the connections of one pixel to its left, top, upper-left, upper-right neighbors. The results are then fused to obtain the super-pixel-level CRF graphs. The model parameters of CRFs are learned via minimizing the negative pseudo-log-likelihood of the potential function. Our results show that the learned graph delivers significantly better segmentation results than CRFs with pre-designated graphs, and achieves state-of-the-art performance when combining with CNN features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with the materials in context database. In: CVPR, pp. 3479–3487 (2015)

    Google Scholar 

  2. Bulo, S.R., Neuhold, G., Kontschieder, P.: Loss max-pooling for semantic image segmentation. arXiv preprint arXiv:1704.02966 (2017)

  3. Cadena, C., Košecká, J.: Semantic segmentation with heterogeneous sensor coverages. In: ICRA, pp. 2639–2645. IEEE (2014)

    Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062 (2014)

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv preprint arXiv:1606.00915 (2016)

  6. Cogswell, M., Lin, X., Purushwalkam, S., Batra, D.: Combining the best of graphical models and convnets for semantic segmentation. arXiv preprint arXiv:1412.4313 (2014)

  7. Dai, J., He, K., Sun, J.: Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV, pp. 1635–1643 (2015)

    Google Scholar 

  8. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  9. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. TPAMI 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  11. Kochanov, D., Ošep, A., Stückler, J., Leibe, B.: Scene flow propagation for semantic mapping and object discovery in dynamic street scenes. In: IROS, pp. 1785–1792. IEEE (2016)

    Google Scholar 

  12. Korč, F., Förstner, W.: Approximate parameter learning in conditional random fields: an empirical investigation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 11–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69321-5_2

    Chapter  Google Scholar 

  13. Lin, G., Milan, A., Shen, C., Reid, I.: Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. arXiv preprint arXiv:1611.06612 (2016)

  14. Lin, G., Shen, C., van den Hengel, A., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: CVPR, pp. 3194–3203 (2016)

    Google Scholar 

  15. Lin, G., Shen, C., Van Den Hengel, A., Reid, I.: Exploring context with deep structured models for semantic segmentation. TPAMI 40(6), 1352–1366 (2018)

    Article  Google Scholar 

  16. Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: CVPR, pp. 5872–5881. IEEE (2017)

    Google Scholar 

  17. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. In: ICCV, pp. 1377–1385 (2015)

    Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  19. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV, pp. 1520–1528 (2015)

    Google Scholar 

  20. Ošep, A., Hermans, A., Engelmann, F., Klostermann, D., Mathias, M., Leibe, B.: Multi-scale object candidates for generic object tracking in street scenes. In: ICRA, pp. 3180–3187. IEEE (2016)

    Google Scholar 

  21. Papandreou, G., Chen, L.C., Murphy, K., Yuille, A.L.: Weakly-and semi-supervised learning of a DCNN for semantic image segmentation. arXiv preprint arXiv:1502.02734 (2015)

  22. Schwing, A.G., Urtasun, R.: Fully connected deep structured networks. arXiv preprint arXiv:1503.02351 (2015)

  23. Wu, Z., Shen, C., Hengel, A.V.D.: High-performance semantic segmentation using very deep fully convolutional networks. arXiv preprint arXiv:1604.04339 (2016)

  24. Zhang, R., Yang, W., Peng, Z., Wang, X., Lin, L.: Progressively diffused networks for semantic image segmentation. arXiv preprint arXiv:1702.05839 (2017)

  25. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.H.: Conditional random fields as recurrent neural networks. In: ICCV, pp. 1529–1537 (2015)

    Google Scholar 

Download references

Acknowledgement

This research was partly supported by the Zhejiang Provincial Natural Science Foundation of China (LQ16F030007 and LQ18F030013), and by National Natural Science Foundation of China (U1509207, 61305021 and 61603341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, F., Wang, Z., Guo, D., Chen, S., Zhang, J., Shao, Z. (2018). Deep CRF-Graph Learning for Semantic Image Segmentation. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11013. Springer, Cham. https://doi.org/10.1007/978-3-319-97310-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97310-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97309-8

  • Online ISBN: 978-3-319-97310-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics