We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Tumors of the Gastrointestinal System Including the Pancreas | SpringerLink
Skip to main content

Tumors of the Gastrointestinal System Including the Pancreas

  • Chapter
  • First Online:
  • 4684 Accesses

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The chapter on the gastrointestinal tract focuses on neoplasms arising in the esophagus, stomach, small intestine, appendix, colon, and anus. An overview of concepts common to the gastrointestinal tract, such as neoplasia arising in inflammatory conditions and hereditary conditions, and an overview of neuroendocrine neoplasms, is provided in the introductory section. A brief review of normal histology of the organs is presented. Most of the tumors presented in this chapter represent epithelial neoplasms, and thus, mesenchymal tumors and lymphomas are reviewed in their respective chapters. The features of the neoplasms are presented, including descriptions of pertinent precursor lesions, pathogenesis, macroscopic and microscopic features as well as tumor subtypes and histologic prognostic features, and immunohistochemical profiles. Common diagnostic dilemmas, predictive and prognostic factors, and molecular abnormalities are discussed. Changes to the current American Joint Commission on Cancer staging guidelines are highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

    Article  PubMed  CAS  Google Scholar 

  2. O’Sullivan KE, Phelan JJ, O’Hanlon C, Lysaght J, O’Sullivan JN, Reynolds JV. The role of inflammation in cancer of the esophagus. Expert Rev Gastroenterol Hepatol. 2014;8(7):749–60.

    Article  PubMed  CAS  Google Scholar 

  3. Park YH, Kim N. Review of atrophic gastritis and intestinal metaplasia as a premalignant lesion of gastric cancer. J Cancer Prev. 2015;20(1):25–40.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Correa P, Piazuelo MB. Helicobacter pylori infection and gastric adenocarcinoma. US Gastroenterol Hepatol Rev. 2011;7(1):59–64.

    PubMed  PubMed Central  Google Scholar 

  5. Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology. 2011;140(6):1807–16.

    Article  PubMed  CAS  Google Scholar 

  6. Axelrad JE, Lichtiger S, Sethi A. Treatment of Crohn’s disease anastomotic stricture with a Lumen-apposing metal stent. Clin Gastroenterol Hepatol. 2018;16(3):A25–6.

    Article  PubMed  Google Scholar 

  7. Ng DW, Ching Tan GH, Teo MC. Malignancy arising in a 41-year-old colonic interposition graft. Asian J Surg. 2016;39(1):45–7.

    Article  PubMed  Google Scholar 

  8. Iwamoto M, Kawada K, Hida K, Hasegawa S, Sakai Y. Adenocarcinoma arising at a colostomy site with inguinal lymph node metastasis: report of a case. Jpn J Clin Oncol. 2015;45(2):217–20.

    Article  PubMed  Google Scholar 

  9. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073–87. e3.

    Article  PubMed  CAS  Google Scholar 

  10. Tutlewska K, Lubinski J, Kurzawski G. Germline deletions in the EPCAM gene as a cause of lynch syndrome – literature review. Hered Cancer Clin Pract. 2013;11(1):9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, et al. Guidelines on genetic evaluation and management of lynch syndrome: a consensus statement by the US multi-society task force on colorectal cancer. Am J Gastroenterol. 2014;109(8):1159–79.

    Article  PubMed  Google Scholar 

  12. Vasen HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on hereditary non-polyposis colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34(5):424–5.

    Article  PubMed  CAS  Google Scholar 

  13. Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453–6.

    Article  PubMed  CAS  Google Scholar 

  14. Parry S, Win AK, Parry B, Macrae FA, Gurrin LC, Church JM, et al. Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut. 2011;60(7):950–7.

    Article  PubMed  Google Scholar 

  15. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.

    Article  PubMed  CAS  Google Scholar 

  16. Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med. 2017;141(5):625–57.

    Article  PubMed  CAS  Google Scholar 

  17. Network NCC. Colon cancer (Version 2.2017 – March 13, 2017). Available from: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf.

  18. Network NCC. Rectal cancer (Version 3.2017 – March 13, 2017). Available from: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf.

  19. Evaluation of Genomic Applications in P, Prevention Working G. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med. 2009;11(1):35–41.

    Article  Google Scholar 

  20. Ladabaum U, Wang G, Terdiman J, Blanco A, Kuppermann M, Boland CR, et al. Strategies to identify the lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis. Ann Intern Med. 2011;155(2):69–79.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rubenstein JH, Enns R, Heidelbaugh J, Barkun A, Clinical Guidelines C. American Gastroenterological Association Institute guideline on the diagnosis and management of Lynch syndrome. Gastroenterology. 2015;149(3):777–82. quiz e16–7.

    Article  PubMed  Google Scholar 

  22. Bartley AN, Luthra R, Saraiya DS, Urbauer DL, Broaddus RR. Identification of cancer patients with Lynch syndrome: clinically significant discordances and problems in tissue-based mismatch repair testing. Cancer Prev Res (Phila). 2012;5(2):320–7.

    Article  Google Scholar 

  23. Blake C, Tsao JL, Wu A, Shibata D. Stepwise deletions of polyA sequences in mismatch repair-deficient colorectal cancers. Am J Pathol. 2001;158(5):1867–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kuan SF, Ren B, Brand R, Dudley B, Pai RK. Neoadjuvant therapy in microsatellite-stable colorectal carcinoma induces concomitant loss of MSH6 and Ki-67 expression. Hum Pathol. 2017;63:33–9.

    Article  PubMed  CAS  Google Scholar 

  25. Bao F, Panarelli NC, Rennert H, Sherr DL, Yantiss RK. Neoadjuvant therapy induces loss of MSH6 expression in colorectal carcinoma. Am J Surg Pathol. 2010;34(12):1798–804.

    Article  PubMed  Google Scholar 

  26. Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn. 2008;10(4):293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang L. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part II. The utility of microsatellite instability testing. J Mol Diagn. 2008;10(4):301–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Buhard O, Lagrange A, Guilloux A, Colas C, Chouchene M, Wanherdrick K, et al. HSP110 T17 simplifies and improves the microsatellite instability testing in patients with colorectal cancer. J Med Genet. 2016;53(6):377–84.

    Article  PubMed  CAS  Google Scholar 

  29. Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics. 2014;30(7):1015–6.

    Article  PubMed  CAS  Google Scholar 

  30. Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC. Microsatellite instability detection by next generation sequencing. Clin Chem. 2014;60(9):1192–9.

    Article  PubMed  CAS  Google Scholar 

  31. Nowak JA, Yurgelun MB, Bruce JL, Rojas-Rudilla V, Hall DL, Shivdasani P, et al. Detection of mismatch repair deficiency and microsatellite instability in colorectal adenocarcinoma by targeted next-generation sequencing. J Mol Diagn. 2017;19(1):84–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Funkhouser WK Jr, Lubin IM, Monzon FA, Zehnbauer BA, Evans JP, Ogino S, et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn. 2012;14(2):91–103.

    Article  PubMed  CAS  Google Scholar 

  33. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.

    PubMed  CAS  Google Scholar 

  34. Deschoolmeester V, Baay M, Wuyts W, Van Marck E, Van Damme N, Vermeulen P, et al. Detection of microsatellite instability in colorectal cancer using an alternative multiplex assay of quasi-monomorphic mononucleotide markers. J Mol Diagn. 2008;10(2):154–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rodriguez-Soler M, Perez-Carbonell L, Guarinos C, Zapater P, Castillejo A, Barbera VM, et al. Risk of cancer in cases of suspected lynch syndrome without germline mutation. Gastroenterology. 2013;144(5):926–32 e1. quiz e13–4.

    Article  PubMed  CAS  Google Scholar 

  36. Haraldsdottir S, Hampel H, Tomsic J, Frankel WL, Pearlman R, de la Chapelle A, et al. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology. 2014;147(6):1308–16. e1.

    Article  PubMed  Google Scholar 

  37. Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA, Goossens M, Ouchene H, Hendriks-Cornelissen SJ, et al. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology. 2014;146(3):643–6. e8.

    Article  PubMed  CAS  Google Scholar 

  38. Castillejo A, Vargas G, Castillejo MI, Navarro M, Barbera VM, Gonzalez S, et al. Prevalence of germline MUTYH mutations among Lynch-like syndrome patients. Eur J Cancer. 2014;50(13):2241–50.

    Article  PubMed  CAS  Google Scholar 

  39. Morak M, Heidenreich B, Keller G, Hampel H, Laner A, de la Chapelle A, et al. Biallelic MUTYH mutations can mimic lynch syndrome. Eur J Hum Genet. 2014;22(11):1334–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Carethers JM. Differentiating Lynch-like from Lynch syndrome. Gastroenterology. 2014;146(3):602–4.

    Article  PubMed  Google Scholar 

  41. Carethers JM, Stoffel EM. Lynch syndrome and Lynch syndrome mimics: the growing complex landscape of hereditary colon cancer. World J Gastroenterol. 2015;21(31):9253–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shia J. Evolving approach and clinical significance of detecting DNA mismatch repair deficiency in colorectal carcinoma. Semin Diagn Pathol. 2015;32(5):352–61.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK, et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer. 2014;50(5):987–96.

    Article  PubMed  Google Scholar 

  44. Jasperson K, Burt RW. The genetics of colorectal cancer. Surg Oncol Clin N Am. 2015;24(4):683–703.

    Article  PubMed  Google Scholar 

  45. Newton KF, Mallinson EK, Bowen J, Lalloo F, Clancy T, Hill J, et al. Genotype-phenotype correlation in colorectal polyposis. Clin Genet. 2012;81(6):521–31.

    Article  PubMed  CAS  Google Scholar 

  46. Knudsen AL, Bulow S, Tomlinson I, Moslein G, Heinimann K, Christensen IJ, et al. Attenuated familial adenomatous polyposis: results from an international collaborative study. Colorectal Dis. 2010;12(10 Online):e243–9.

    Article  PubMed  CAS  Google Scholar 

  47. Burt RW, Leppert MF, Slattery ML, Samowitz WS, Spirio LN, Kerber RA, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004;127(2):444–51.

    Article  PubMed  Google Scholar 

  48. Aretz S, Uhlhaas S, Caspari R, Mangold E, Pagenstecher C, Propping P, et al. Frequency and parental origin of de novo APC mutations in familial adenomatous polyposis. Eur J Hum Genet. 2004;12(1):52–8.

    Article  PubMed  CAS  Google Scholar 

  49. Bulow S, Bjork J, Christensen IJ, Fausa O, Jarvinen H, Moesgaard F, et al. Duodenal adenomatosis in familial adenomatous polyposis. Gut. 2004;53(3):381–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gardner EJ. Follow-up study of a family group exhibiting dominant inheritance for a syndrome including intestinal polyps, osteomas, fibromas and epidermal cysts. Am J Hum Genet. 1962;14:376–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Vogt S, Jones N, Christian D, Engel C, Nielsen M, Kaufmann A, et al. Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology. 2009;137(6):1976–85. e1–10.

    Article  PubMed  CAS  Google Scholar 

  52. Nielsen M, Morreau H, Vasen HF, Hes FJ. MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol. 2011;79(1):1–16.

    Article  PubMed  Google Scholar 

  53. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G:C-->T:a mutations in colorectal tumors. Nat Genet. 2002;30(2):227–32.

    Google Scholar 

  54. Borras E, Taggart MW, Lynch PM, Vilar E. Establishing a diagnostic road map for MUTYH-associated polyposis. Clin Cancer Res. 2014;20(5):1061–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Guarinos C, Juarez M, Egoavil C, Rodriguez-Soler M, Perez-Carbonell L, Salas R, et al. Prevalence and characteristics of MUTYH-associated polyposis in patients with multiple adenomatous and serrated polyps. Clin Cancer Res. 2014;20(5):1158–68.

    Article  CAS  PubMed  Google Scholar 

  56. Church J, Kravochuck S. The “studded” rectum: phenotypic evidence of MYH-associated polyposis. Dis Colon Rectum. 2016;59(6):565–9.

    Article  PubMed  Google Scholar 

  57. Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2013;45(2):136–44.

    Article  CAS  PubMed  Google Scholar 

  58. Bellido F, Pineda M, Aiza G, Valdes-Mas R, Navarro M, Puente DA, et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genet Med. 2016;18(4):325–32.

    Article  CAS  PubMed  Google Scholar 

  59. Mehenni H, Blouin JL, Radhakrishna U, Bhardwaj SS, Bhardwaj K, Dixit VB, et al. Peutz-Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4. Am J Hum Genet. 1997;61(6):1327–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18(1):38–43.

    Article  PubMed  CAS  Google Scholar 

  61. Karuman P, Gozani O, Odze RD, Zhou XC, Zhu H, Shaw R, et al. The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell. 2001;7(6):1307–19.

    Article  PubMed  CAS  Google Scholar 

  62. Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63.

    Article  PubMed  CAS  Google Scholar 

  63. Jass JR, Williams CB, Bussey HJ, Morson BC. Juvenile polyposis--a precancerous condition. Histopathology. 1988;13(6):619–30.

    Article  PubMed  CAS  Google Scholar 

  64. Bouraoui S, Azouz H, Kechrid H, Lemaiem F, Mzabi-Regaya S. Peutz-Jeghers’ syndrome with malignant development in a hamartomatous polyp: report of one case and review of the literature. Gastroenterol Clin Biol. 2008;32(3):250–4.

    Article  PubMed  CAS  Google Scholar 

  65. Heald B, Mester J, Rybicki L, Orloff MS, Burke CA, Eng C. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology. 2010;139(6):1927–33.

    Article  CAS  PubMed  Google Scholar 

  66. Beggs AD, Latchford AR, Vasen HF, Moslein G, Alonso A, Aretz S, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59(7):975–86.

    Article  PubMed  CAS  Google Scholar 

  67. Gammon A, Jasperson K, Kohlmann W, Burt RW. Hamartomatous polyposis syndromes. Best Pract Res Clin Gastroenterol. 2009;23(2):219–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Menko FH, Kneepkens CM, de Leeuw N, Peeters EA, Van Maldergem L, Kamsteeg EJ, et al. Variable phenotypes associated with 10q23 microdeletions involving the PTEN and BMPR1A genes. Clin Genet. 2008;74(2):145–54.

    Article  PubMed  CAS  Google Scholar 

  69. Brosens LA, van Hattem A, Hylind LM, Iacobuzio-Donahue C, Romans KE, Axilbund J, et al. Risk of colorectal cancer in juvenile polyposis. Gut. 2007;56(7):965–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22(3):183–98.

    Article  PubMed  CAS  Google Scholar 

  71. Eng C, Thiele H, Zhou XP, Gorlin RJ, Hennekam RC, Winter RM. PTEN mutations and proteus syndrome. Lancet. 2001;358(9298):2079–80.

    Article  PubMed  CAS  Google Scholar 

  72. Stanich PP, Owens VL, Sweetser S, Khambatta S, Smyrk TC, Richardson RL, et al. Colonic polyposis and neoplasia in Cowden syndrome. Mayo Clin Proc. 2011;86(6):489–92.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tan C, Du X. KRAS mutation testing in metastatic colorectal cancer. World J Gastroenterol. 2012;18(37):5171–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Mocellin S, Nitti D. Gastrointestinal carcinoid: epidemiological and survival evidence from a large population-based study (n = 25 531). Ann Oncol. 2013;24(12):3040–4.

    Article  PubMed  CAS  Google Scholar 

  75. AJCC cancer staging manual. 8 ed. New York: Springer Science+Business Media; 2016. pages cm p.

    Google Scholar 

  76. Pinchot SN, Holen K, Sippel RS, Chen H. Carcinoid tumors. Oncologist. 2008;13(12):1255–69.

    Article  PubMed  CAS  Google Scholar 

  77. Raut CP, Kulke MH, Glickman JN, Swanson RS, Ashley SW. Carcinoid tumors. Curr Probl Surg. 2006;43(6):383–450.

    Article  PubMed  Google Scholar 

  78. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.

    Article  PubMed  Google Scholar 

  79. Williams ED, Siebenmann RE, Sobin LH. Histological typing of endocrine tumours. 1st ed. Geneva: World Health Organization. International Histological Classification of Tumours; 1980. p. 69.

    Google Scholar 

  80. Solcia E, Kloppel G, Sobin LH. Histological typing of endocrine tumours. 2nd ed. Berlin Heidelberg: Springer; 2000.

    Book  Google Scholar 

  81. Hamilton SR, Aaltonen LA, Organization WH, Cancer IAfRo. Pathology and genetics of tumours of the digestive system. Lyon: IARC Press; 2000.

    Google Scholar 

  82. Lloyd RV, Osamura R, Kloppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. 4th ed. Lyon: International Agency for Research on Cancer; 2017.

    Google Scholar 

  83. Bosman FT, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of the digestive system. 4th ed. Lyon: International Agency for Research on Cancer; 2010. p. 417.

    Google Scholar 

  84. Tang LH, Gonen M, Hedvat C, Modlin IM, Klimstra DS. Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods. Am J Surg Pathol. 2012;36(12):1761–70.

    Article  PubMed  Google Scholar 

  85. Reid MD, Bagci P, Ohike N, Saka B, Erbarut Seven I, Dursun N, et al. Calculation of the Ki67 index in pancreatic neuroendocrine tumors: a comparative analysis of four counting methodologies. Mod Pathol. 2015;28(5):686–94.

    Article  PubMed  Google Scholar 

  86. Adsay V. Ki67 labeling index in neuroendocrine tumors of the gastrointestinal and pancreatobiliary tract: to count or not to count is not the question, but rather how to count. Am J Surg Pathol. 2012;36(12):1743–6.

    Article  PubMed  Google Scholar 

  87. McCall CM, Shi C, Cornish TC, Klimstra DS, Tang LH, Basturk O, et al. Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate. Am J Surg Pathol. 2013;37(11):1671–7.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Matsukuma K, Olson KA, Gui D, Gandour-Edwards R, Li Y, Beckett L. Synaptophysin-Ki67 double stain: a novel technique that improves interobserver agreement in the grading of well-differentiated gastrointestinal neuroendocrine tumors. Mod Pathol. 2017;30(4):620–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Benafif S, Eeles R. Diagnosis and management of hereditary carcinoids. Recent Results Cancer Res. 2016;205:149–68.

    Article  PubMed  Google Scholar 

  90. Sei Y, Zhao X, Forbes J, Szymczak S, Li Q, Trivedi A, et al. A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase. Gastroenterology. 2015;149(1):67–78.

    Article  PubMed  CAS  Google Scholar 

  91. Katdare MV, Fichera A, Heimann TM. Familial rectal carcinoid: report of two first-degree relatives with rectal carcinoid and review of the literature. Tech Coloproctol. 2006;10(2):143–6.

    Article  PubMed  CAS  Google Scholar 

  92. Doi M, Ikawa O, Taniguchi H, Kawamura T, Katsura K. Multiple rectal carcinoid tumors in monozygotic twins. Clin J Gastroenterol. 2016;9(4):215–21.

    Article  PubMed  Google Scholar 

  93. Hiripi E, Bermejo JL, Sundquist J, Hemminki K. Familial gastrointestinal carcinoid tumours and associated cancers. Ann Oncol. 2009;20(5):950–4.

    Article  PubMed  CAS  Google Scholar 

  94. Hassan C, Repici A, Rex DK. Serrated polyposis syndrome: risk stratification or reduction? Gut. 2016;65(7):1070–2.

    Article  PubMed  CAS  Google Scholar 

  95. Heetfeld M, Chougnet CN, Olsen IH, Rinke A, Borbath I, Crespo G, et al. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015;22(4):657–64.

    Article  PubMed  CAS  Google Scholar 

  96. Velayoudom-Cephise FL, Duvillard P, Foucan L, Hadoux J, Chougnet CN, Leboulleux S, et al. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer. 2013;20(5):649–57.

    Article  PubMed  Google Scholar 

  97. Coriat R, Walter T, Terris B, Couvelard A, Ruszniewski P. Gastroenteropancreatic well-differentiated grade 3 neuroendocrine tumors: review and position statement. Oncologist. 2016;21(10):1191–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Basturk O, Yang Z, Tang LH, Hruban RH, Adsay V, McCall CM, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogeneous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015;39(5):683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Reid MD, Balci S, Saka B, Adsay NV. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr Pathol. 2014;25(1):65–79.

    Article  PubMed  CAS  Google Scholar 

  100. Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund P, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013;24(1):152–60.

    Article  PubMed  CAS  Google Scholar 

  101. Tang LH, Basturk O, Sue JJ, Klimstra DS. A practical approach to the classification of WHO grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas. Am J Surg Pathol. 2016;40(9):1192–202.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Smith JD, Reidy DL, Goodman KA, Shia J, Nash GM. A retrospective review of 126 high-grade neuroendocrine carcinomas of the colon and rectum. Ann Surg Oncol. 2014;21(9):2956–62.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rindi G, Kloppel G, Couvelard A, Komminoth P, Korner M, Lopes JM, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2007;451(4):757–62.

    Article  PubMed  CAS  Google Scholar 

  104. Rindi G, Petrone G, Inzani F. The 2010 WHO classification of digestive neuroendocrine neoplasms: a critical appraisal four years after its introduction. Endocr Pathol. 2014;25(2):186–92.

    Article  PubMed  CAS  Google Scholar 

  105. La Rosa S, Marando A, Sessa F, Capella C. Mixed adenoneuroendocrine carcinomas (MANECs) of the gastrointestinal tract: an update. Cancers (Basel). 2012;4(1):11–30.

    Article  PubMed  PubMed Central  Google Scholar 

  106. La Rosa S, Marando A, Furlan D, Sahnane N, Capella C. Colorectal poorly differentiated neuroendocrine carcinomas and mixed adenoneuroendocrine carcinomas: insights into the diagnostic immunophenotype, assessment of methylation profile, and search for prognostic markers. Am J Surg Pathol. 2012;36(4):601–11.

    Article  PubMed  Google Scholar 

  107. Capella C, La Rosa S, Uccella S, Billo P, Cornaggia M. Mixed endocrine-exocrine tumors of the gastrointestinal tract. Semin Diagn Pathol. 2000;17(2):91–103.

    PubMed  CAS  Google Scholar 

  108. Volante M, Rindi G, Papotti M. The grey zone between pure (neuro)endocrine and non-(neuro)endocrine tumours: a comment on concepts and classification of mixed exocrine-endocrine neoplasms. Virchows Arch. 2006;449(5):499–506.

    Article  PubMed  Google Scholar 

  109. Lewin K. Carcinoid tumors and the mixed (composite) glandular-endocrine cell carcinomas. Am J Surg Pathol. 1987;11(Suppl 1):71–86.

    Article  PubMed  Google Scholar 

  110. Volante M, Righi L, Asioli S, Bussolati G, Papotti M. Goblet cell carcinoids and other mixed neuroendocrine/nonneuroendocrine neoplasms. Virchows Arch. 2007;451(Suppl 1):S61–9.

    Article  PubMed  Google Scholar 

  111. Hervieu V, Scoazec JY. Mixed endocrine tumors. Ann Pathol. 2005;25(6):511–28.

    Article  PubMed  Google Scholar 

  112. Weissferdt A, Tang X, Wistuba II, Moran CA. Comparative immunohistochemical analysis of pulmonary and thymic neuroendocrine carcinomas using PAX8 and TTF-1. Mod Pathol. 2013;26(12):1554–60.

    Article  PubMed  CAS  Google Scholar 

  113. Lin X, Saad RS, Luckasevic TM, Silverman JF, Liu Y. Diagnostic value of CDX-2 and TTF-1 expressions in separating metastatic neuroendocrine neoplasms of unknown origin. Appl Immunohistochem Mol Morphol. 2007;15(4):407–14.

    Article  PubMed  CAS  Google Scholar 

  114. Ordonez NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol. 2012;19(3):140–51.

    Article  PubMed  CAS  Google Scholar 

  115. Graham RP, Shrestha B, Caron BL, Smyrk TC, Grogg KL, Lloyd RV, et al. Islet-1 is a sensitive but not entirely specific marker for pancreatic neuroendocrine neoplasms and their metastases. Am J Surg Pathol. 2013;37(3):399–405.

    Article  PubMed  Google Scholar 

  116. Schmitt AM, Riniker F, Anlauf M, Schmid S, Soltermann A, Moch H, et al. Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am J Surg Pathol. 2008;32(3):420–5.

    Article  PubMed  Google Scholar 

  117. Agaimy A, Erlenbach-Wunsch K, Konukiewitz B, Schmitt AM, Rieker RJ, Vieth M, et al. ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Mod Pathol. 2013;26(7):995–1003.

    Article  PubMed  CAS  Google Scholar 

  118. Yang EJ, Kong CS, Longacre TA. Vulvar and anal intraepithelial neoplasia: terminology, diagnosis, and ancillary studies. Adv Anat Pathol. 2017;24(3):136–50.

    Article  PubMed  Google Scholar 

  119. Koo J, Mertens RB, Mirocha JM, Wang HL, Dhall D. Value of islet 1 and PAX8 in identifying metastatic neuroendocrine tumors of pancreatic origin. Mod Pathol. 2012;25(6):893–901.

    Article  PubMed  CAS  Google Scholar 

  120. Mehta RS, Song M, Nishihara R, Drew DA, Wu K, Qian ZR, et al. Dietary patterns and risk of colorectal cancer: analysis by tumor location and molecular subtypes. Gastroenterology. 2017;152(8):1944–53. e1.

    Article  PubMed  CAS  Google Scholar 

  121. Kim JY, Hong SM. Recent updates on neuroendocrine tumors from the gastrointestinal and Pancreatobiliary tracts. Arch Pathol Lab Med. 2016;140(5):437–48.

    Article  PubMed  CAS  Google Scholar 

  122. Kim KW, Krajewski KM, Nishino M, Jagannathan JP, Shinagare AB, Tirumani SH, et al. Update on the management of gastroenteropancreatic neuroendocrine tumors with emphasis on the role of imaging. AJR Am J Roentgenol. 2013;201(4):811–24.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Koo J, Dhall D. Problems with the diagnosis of metastatic neuroendocrine neoplasms. Which diagnostic criteria should we use to determine tumor origin and help guide therapy? Semin Diagn Pathol. 2015;32(6):456–68.

    Article  PubMed  Google Scholar 

  124. Hallet J, Law CH, Cukier M, Saskin R, Liu N, Singh S. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer. 2015;121(4):589–97.

    Article  PubMed  Google Scholar 

  125. Dogeas E, Cameron JL, Wolfgang CL, Hirose K, Hruban RH, Makary MA, et al. Duodenal and ampullary carcinoid tumors: size predicts necessity for lymphadenectomy. J Gastrointest Surg. 2017;21(8):1262–9.

    Article  PubMed  Google Scholar 

  126. Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst. 2008;100(16):1184–7.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ryerson AB, Eheman CR, Altekruse SF, Ward JW, Jemal A, Sherman RL, et al. Annual Report to the Nation on the Status of Cancer, 1975-2012, featuring the increasing incidence of liver cancer. Cancer. 2016;122(9):1312–37.

    Article  PubMed  Google Scholar 

  128. Wang HH, Mangano MM, Antonioli DA. Evaluation of T-lymphocytes in esophageal mucosal biopsies. Mod Pathol. 1994;7(1):55–8.

    PubMed  CAS  Google Scholar 

  129. De La Pava S, Nigogosyan G, Pickren JW, Cabrera A. Melanosis of the esophagus. Cancer. 1963;16:48–50.

    Article  Google Scholar 

  130. Odze RD, Goldblum JR. Odze and Goldblum surgical pathology of the GI tract, liver, biliary tract, and pancreas. Philadelphia: Elsevier - Health Sciences Division; 2014.

    Google Scholar 

  131. Crespi M, Munoz N, Grassi A, Qiong S, Jing WK, Jien LJ. Precursor lesions of oesophageal cancer in a low-risk population in China: comparison with high-risk populations. Int J Cancer. 1984;34(5):599–602.

    Article  PubMed  CAS  Google Scholar 

  132. Dawsey SM, Lewin KJ, Wang GQ, Liu FS, Nieberg RK, Yu Y, et al. Squamous esophageal histology and subsequent risk of squamous cell carcinoma of the esophagus. A prospective follow-up study from Linxian, China. Cancer. 1994;74(6):1686–92.

    Article  PubMed  CAS  Google Scholar 

  133. Lopes AB, Fagundes RB. Esophageal squamous cell carcinoma - precursor lesions and early diagnosis. World J Gastrointest Endosc. 2012;4(1):9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mandard AM, Marnay J, Gignoux M, Segol P, Blanc L, Ollivier JM, et al. Cancer of the esophagus and associated lesions: detailed pathologic study of 100 esophagectomy specimens. Hum Pathol. 1984;15(7):660–9.

    Article  PubMed  CAS  Google Scholar 

  135. Shimizu Y, Yoshida T, Kato M, Hirota J, Ono S, Nakagawa M, et al. Low-grade dysplasia component in early invasive squamous cell carcinoma of the esophagus. J Gastroenterol Hepatol. 2010;25(2):314–8.

    Article  PubMed  Google Scholar 

  136. Wang GQ, Abnet CC, Shen Q, Lewin KJ, Sun XD, Roth MJ, et al. Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year prospective follow up study in a high risk population. Gut. 2005;54(2):187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Takahashi H, Arimura Y, Masao H, Okahara S, Tanuma T, Kodaira J, et al. Endoscopic submucosal dissection is superior to conventional endoscopic resection as a curative treatment for early squamous cell carcinoma of the esophagus (with video). Gastrointest Endosc. 2010;72(2):255–64. 64 e1–2.

    Article  PubMed  Google Scholar 

  138. Hashimoto CL, Iriya K, Baba ER, Navarro-Rodriguez T, Zerbini MC, Eisig JN, et al. Lugol’s dye spray chromoendoscopy establishes early diagnosis of esophageal cancer in patients with primary head and neck cancer. Am J Gastroenterol. 2005;100(2):275–82.

    Article  PubMed  Google Scholar 

  139. Takenaka R, Kawahara Y, Okada H, Hori K, Inoue M, Kawano S, et al. Narrow-band imaging provides reliable screening for esophageal malignancy in patients with head and neck cancers. Am J Gastroenterol. 2009;104(12):2942–8.

    Article  PubMed  Google Scholar 

  140. Tajima Y, Nakanishi Y, Tachimori Y, Kato H, Watanabe H, Yamaguchi H, et al. Significance of involvement by squamous cell carcinoma of the ducts of esophageal submucosal glands. Analysis of 201 surgically resected superficial squamous cell carcinomas. Cancer. 2000;89(2):248–54.

    Article  PubMed  CAS  Google Scholar 

  141. Abraham SC, Wang H, Wang KK, Wu TT. Paget cells in the esophagus: assessment of their histopathologic features and near-universal association with underlying esophageal adenocarcinoma. Am J Surg Pathol. 2008;32(7):1068–74.

    Article  PubMed  Google Scholar 

  142. Wang WC, Wu TT, Chandan VS, Lohse CM, Zhang L. Ki-67 and ProExC are useful immunohistochemical markers in esophageal squamous intraepithelial neoplasia. Hum Pathol. 2011;42(10):1430–7.

    Article  PubMed  CAS  Google Scholar 

  143. Richter JE. Surgery for reflux disease: reflections of a gastroenterologist. N Engl J Med. 1992;326(12):825–7.

    Article  PubMed  CAS  Google Scholar 

  144. Wild CP, Hardie LJ. Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer. 2003;3(9):676–84.

    Article  PubMed  CAS  Google Scholar 

  145. Westhoff B, Brotze S, Weston A, McElhinney C, Cherian R, Mayo MS, et al. The frequency of Barrett’s esophagus in high-risk patients with chronic GERD. Gastrointest Endosc. 2005;61(2):226–31.

    Article  PubMed  Google Scholar 

  146. Gerson LB, Shetler K, Triadafilopoulos G. Prevalence of Barrett’s esophagus in asymptomatic individuals. Gastroenterology. 2002;123(2):461–7.

    Article  PubMed  Google Scholar 

  147. Cameron AJ. Epidemiology of columnar-lined esophagus and adenocarcinoma. Gastroenterol Clin N Am. 1997;26(3):487–94.

    Article  CAS  Google Scholar 

  148. Hampel H, Abraham NS, El-Serag HB. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann Intern Med. 2005;143(3):199–211.

    Article  PubMed  Google Scholar 

  149. Kamat P, Wen S, Morris J, Anandasabapathy S. Exploring the association between elevated body mass index and Barrett’s esophagus: a systematic review and meta-analysis. Ann Thorac Surg. 2009;87(2):655–62.

    Article  PubMed  Google Scholar 

  150. Wang KK, Sampliner RE, Practice Parameters Committee of the American College of G. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol. 2008;103(3):788–97.

    Article  PubMed  Google Scholar 

  151. Sampliner RE. Practice guidelines on the diagnosis, surveillance, and therapy of Barrett’s esophagus. The Practice Parameters Committee of the American College of Gastroenterology. Am J Gastroenterol. 1998;93(7):1028–32.

    Article  PubMed  CAS  Google Scholar 

  152. Riddell RH. The biopsy diagnosis of gastroesophageal reflux disease, “carditis,” and Barrett’s esophagus, and sequelae of therapy. Am J Surg Pathol. 1996;20(Suppl 1):S31–50.

    Article  PubMed  Google Scholar 

  153. Sharma P, McQuaid K, Dent J, Fennerty MB, Sampliner R, Spechler S, et al. A critical review of the diagnosis and management of Barrett’s esophagus: the AGA Chicago Workshop. Gastroenterology. 2004;127(1):310–30.

    Article  PubMed  Google Scholar 

  154. Odze RD. Unraveling the mystery of the gastroesophageal junction: a pathologist’s perspective. Am J Gastroenterol. 2005;100(8):1853–67.

    Article  PubMed  Google Scholar 

  155. Playford RJ. New British Society of Gastroenterology (BSG) guidelines for the diagnosis and management of Barrett’s oesophagus. Gut. 2006;55(4):442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Ogiya K, Kawano T, Ito E, Nakajima Y, Kawada K, Nishikage T, et al. Lower esophageal palisade vessels and the definition of Barrett’s esophagus. Dis Esophagus. 2008;21(7):645–9.

    Article  PubMed  CAS  Google Scholar 

  157. Gatenby PA, Ramus JR, Caygill CP, Shepherd NA, Watson A. Relevance of the detection of intestinal metaplasia in non-dysplastic columnar-lined oesophagus. Scand J Gastroenterol. 2008;43(5):524–30.

    Article  PubMed  Google Scholar 

  158. Kelty CJ, Gough MD, Van Wyk Q, Stephenson TJ, Ackroyd R. Barrett’s oesophagus: intestinal metaplasia is not essential for cancer risk. Scand J Gastroenterol. 2007;42(11):1271–4.

    Article  PubMed  Google Scholar 

  159. Glickman JN, Wang H, Das KM, Goyal RK, Spechler SJ, Antonioli D, et al. Phenotype of Barrett’s esophagus and intestinal metaplasia of the distal esophagus and gastroesophageal junction: an immunohistochemical study of cytokeratins 7 and 20, Das-1 and 45 MI. Am J Surg Pathol. 2001;25(1):87–94.

    Article  PubMed  CAS  Google Scholar 

  160. Conio M, Filiberti R, Blanchi S, Ferraris R, Marchi S, Ravelli P, et al. Risk factors for Barrett’s esophagus: a case-control study. Int J Cancer. 2002;97(2):225–9.

    Article  PubMed  CAS  Google Scholar 

  161. Ofman JJ, Shaheen NJ, Desai AA, Moody B, Bozymski EM, Weinstein WM. The quality of care in Barrett’s esophagus: endoscopist and pathologist practices. Am J Gastroenterol. 2001;96(3):876–81.

    Article  PubMed  CAS  Google Scholar 

  162. Iftikhar SY, James PD, Steele RJ, Hardcastle JD, Atkinson M. Length of Barrett’s oesophagus: an important factor in the development of dysplasia and adenocarcinoma. Gut. 1992;33(9):1155–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Sikkema M, Looman CW, Steyerberg EW, Kerkhof M, Kastelein F, van Dekken H, et al. Predictors for neoplastic progression in patients with Barrett’s Esophagus: a prospective cohort study. Am J Gastroenterol. 2011;106(7):1231–8.

    Article  PubMed  CAS  Google Scholar 

  164. Avidan B, Sonnenberg A, Schnell TG, Chejfec G, Metz A, Sontag SJ. Hiatal hernia size, Barrett’s length, and severity of acid reflux are all risk factors for esophageal adenocarcinoma. Am J Gastroenterol. 2002;97(8):1930–6.

    Article  PubMed  Google Scholar 

  165. Rudolph RE, Vaughan TL, Storer BE, Haggitt RC, Rabinovitch PS, Levine DS, et al. Effect of segment length on risk for neoplastic progression in patients with Barrett esophagus. Ann Intern Med. 2000;132(8):612–20.

    Article  PubMed  CAS  Google Scholar 

  166. Hornick JL, Blount PL, Sanchez CA, Cowan DS, Ayub K, Maley CC, et al. Biologic properties of columnar epithelium underneath reepithelialized squamous mucosa in Barrett’s esophagus. Am J Surg Pathol. 2005;29(3):372–80.

    Article  PubMed  Google Scholar 

  167. Mino-Kenudson M, Ban S, Ohana M, Puricelli W, Deshpande V, Shimizu M, et al. Buried dysplasia and early adenocarcinoma arising in Barrett esophagus after porfimer-photodynamic therapy. Am J Surg Pathol. 2007;31(3):403–9.

    Article  PubMed  Google Scholar 

  168. Shaheen NJ, Sharma P, Overholt BF, Wolfsen HC, Sampliner RE, Wang KK, et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med. 2009;360(22):2277–88.

    Article  PubMed  CAS  Google Scholar 

  169. Weinstein WM, Ippoliti AF. The diagnosis of Barrett’s esophagus: goblets, goblets, goblets. Gastrointest Endosc. 1996;44(1):91–5.

    Article  PubMed  CAS  Google Scholar 

  170. Srivastava A, Odze RD, Lauwers GY, Redston M, Antonioli DA, Glickman JN. Morphologic features are useful in distinguishing Barrett esophagus from carditis with intestinal metaplasia. Am J Surg Pathol. 2007;31(11):1733–41.

    Article  PubMed  Google Scholar 

  171. Antonioli DA, Wang HH. Morphology of Barrett’s esophagus and Barrett’s-associated dysplasia and adenocarcinoma. Gastroenterol Clin N Am. 1997;26(3):495–506.

    Article  CAS  Google Scholar 

  172. Odze RD. Diagnosis and grading of dysplasia in Barrett’s oesophagus. J Clin Pathol. 2006;59(10):1029–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Wang HH, Zeroogian JM, Spechler SJ, Goyal RK, Antonioli DA. Prevalence and significance of pancreatic acinar metaplasia at the gastroesophageal junction. Am J Surg Pathol. 1996;20(12):1507–10.

    Article  PubMed  CAS  Google Scholar 

  174. Chen YY, Wang HH, Antonioli DA, Spechler SJ, Zeroogian JM, Goyal R, et al. Significance of acid-mucin-positive nongoblet columnar cells in the distal esophagus and gastroesophageal junction. Hum Pathol. 1999;30(12):1488–95.

    Article  PubMed  CAS  Google Scholar 

  175. Shields HM, Rosenberg SJ, Zwas FR, Ransil BJ, Lembo AJ, Odze R. Prospective evaluation of multilayered epithelium in Barrett’s esophagus. Am J Gastroenterol. 2001;96(12):3268–73.

    Article  PubMed  CAS  Google Scholar 

  176. Hahn HP, Shahsafaei A, Odze RD. Vascular and lymphatic properties of the superficial and deep lamina propria in Barrett esophagus. Am J Surg Pathol. 2008;32(10):1454–61.

    Article  PubMed  Google Scholar 

  177. Reid BJ, Haggitt RC, Rubin CE, Roth G, Surawicz CM, Van Belle G, et al. Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Hum Pathol. 1988;19(2):166–78.

    Article  PubMed  CAS  Google Scholar 

  178. Schlemper RJ, Riddell RH, Kato Y, Borchard F, Cooper HS, Dawsey SM, et al. The Vienna classification of gastrointestinal epithelial neoplasia. Gut. 2000;47(2):251–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Lomo LC, Blount PL, Sanchez CA, Li X, Galipeau PC, Cowan DS, et al. Crypt dysplasia with surface maturation: a clinical, pathologic, and molecular study of a Barrett’s esophagus cohort. Am J Surg Pathol. 2006;30(4):423–35.

    Article  PubMed  Google Scholar 

  180. Brown IS, Whiteman DC, Lauwers GY. Foveolar type dysplasia in Barrett esophagus. Mod Pathol. 2010;23(6):834–43.

    Article  PubMed  CAS  Google Scholar 

  181. Souza RF, Morales CP, Spechler SJ. Review article: a conceptual approach to understanding the molecular mechanisms of cancer development in Barrett’s oesophagus. Aliment Pharmacol Ther. 2001;15(8):1087–100.

    Article  PubMed  CAS  Google Scholar 

  182. Hornick JL, Odze RD. Neoplastic precursor lesions in Barrett’s esophagus. Gastroenterol Clin N Am. 2007;36(4):775–96. v.

    Article  Google Scholar 

  183. Thurberg BL, Duray PH, Odze RD. Polypoid dysplasia in Barrett’s esophagus: a clinicopathologic, immunohistochemical, and molecular study of five cases. Hum Pathol. 1999;30(7):745–52.

    Article  PubMed  CAS  Google Scholar 

  184. Buttar NS, Wang KK, Sebo TJ, Riehle DM, Krishnadath KK, Lutzke LS, et al. Extent of high-grade dysplasia in Barrett’s esophagus correlates with risk of adenocarcinoma. Gastroenterology. 2001;120(7):1630–9.

    Article  PubMed  CAS  Google Scholar 

  185. Reid BJ, Blount PL, Feng Z, Levine DS. Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia. Am J Gastroenterol. 2000;95(11):3089–96.

    Article  PubMed  CAS  Google Scholar 

  186. Asthana N, Mandich D, Ligato S. Esophageal polypoid dysplasia of gastric foveolar phenotype with focal intramucosal carcinoma associated with Barrett’s esophagus. Am J Surg Pathol. 2008;32(10):1581–5.

    Article  PubMed  Google Scholar 

  187. Montgomery E, Bronner MP, Greenson JK, Haber MM, Hart J, Lamps LW, et al. Are ulcers a marker for invasive carcinoma in Barrett's esophagus? Data from a diagnostic variability study with clinical follow-up. Am J Gastroenterol. 2002;97(1):27–31.

    Article  PubMed  Google Scholar 

  188. Montgomery E, Bronner MP, Goldblum JR, Greenson JK, Haber MM, Hart J, et al. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum Pathol. 2001;32(4):368–78.

    Article  PubMed  CAS  Google Scholar 

  189. Zhang X, Huang Q, Goyal RK, Odze RD. DNA ploidy abnormalities in basal and superficial regions of the crypts in Barrett’s esophagus and associated neoplastic lesions. Am J Surg Pathol. 2008;32(9):1327–35.

    Article  PubMed  Google Scholar 

  190. Rucker-Schmidt RL, Sanchez CA, Blount PL, Ayub K, Li X, Rabinovitch PS, et al. Nonadenomatous dysplasia in Barrett esophagus: a clinical, pathologic, and DNA content flow cytometric study. Am J Surg Pathol. 2009;33(6):886–93.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Mahajan D, Bennett AE, Liu X, Bena J, Bronner MP. Grading of gastric foveolar-type dysplasia in Barrett’s esophagus. Mod Pathol. 2010;23(1):1–11.

    Article  PubMed  Google Scholar 

  192. Naini BV, Souza RF, Odze RD. Barrett’s esophagus: a comprehensive and contemporary review for pathologists. Am J Surg Pathol. 2016;40(5):e45–66.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Cook MB, Chow WH, Devesa SS. Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977–2005. Br J Cancer. 2009;101(5):855–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Bosman FT, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of the digestive system. Lyon: IARC Press; 2010. p. 417.

    Google Scholar 

  195. Ina H, Shibuya H, Ohashi I, Kitagawa M. The frequency of a concomitant early esophageal cancer in male patients with oral and oropharyngeal cancer. Screening results using Lugol dye endoscopy. Cancer. 1994;73(8):2038–41.

    Article  PubMed  CAS  Google Scholar 

  196. Takubo K, Aida J, Sawabe M, Kurosumi M, Arima M, Fujishiro M, et al. Early squamous cell carcinoma of the oesophagus: the Japanese viewpoint. Histopathology. 2007;51(6):733–42.

    Article  PubMed  CAS  Google Scholar 

  197. Lin DC, Du XL, Wang MR. Protein alterations in ESCC and clinical implications: a review. Dis Esophagus. 2009;22(1):9–20.

    Article  PubMed  Google Scholar 

  198. Lu YK, Li YM, Gu YZ. Cancer of esophagus and esophagogastric junction: analysis of results of 1,025 resections after 5 to 20 years. Ann Thorac Surg. 1987;43(2):176–81.

    Article  PubMed  CAS  Google Scholar 

  199. Ide H, Nakamura T, Hayashi K, Endo T, Kobayashi A, Eguchi R, et al. Esophageal squamous cell carcinoma: pathology and prognosis. World J Surg. 1994;18(3):321–30.

    Article  PubMed  CAS  Google Scholar 

  200. Sarbia M, Porschen R, Borchard F, Horstmann O, Willers R, Gabbert HE. Incidence and prognostic significance of vascular and neural invasion in squamous cell carcinomas of the esophagus. Int J Cancer. 1995;61(3):333–6.

    Article  PubMed  CAS  Google Scholar 

  201. Sarbia M, Bittinger F, Porschen R, Dutkowski P, Willers R, Gabbert HE. Prognostic value of histopathologic parameters of esophageal squamous cell carcinoma. Cancer. 1995;76(6):922–7.

    Article  PubMed  CAS  Google Scholar 

  202. Amin MB, Edge SB, American Joint Committee on Cancer. AJCC cancer staging manual. 8th ed. Switzerland: Springer; 2017. p. xvii. 1024 pages.

    Book  Google Scholar 

  203. Shimada H, Kitabayashi H, Nabeya Y, Okazumi S, Matsubara H, Funami Y, et al. Treatment response and prognosis of patients after recurrence of esophageal cancer. Surgery. 2003;133(1):24–31.

    Article  PubMed  Google Scholar 

  204. Mori M, Matsuda H, Kuwano H, Matsuura H, Sugimachi K. Oesophageal squamous cell carcinoma with lymphoid stroma. A case report. Virchows Arch A Pathol Anat Histopathol. 1989;415(5):473–9.

    Article  PubMed  CAS  Google Scholar 

  205. Takubo K, Takai A, Takayama S, Sasajima K, Yamashita K, Fujita K. Intraductal spread of esophageal squamous cell carcinoma. Cancer. 1987;59(10):1751–7.

    Article  PubMed  CAS  Google Scholar 

  206. Tsang WY, Chan JK, Lee KC, Leung AK, Fu YT. Basaloid-squamous carcinoma of the upper aerodigestive tract and so-called adenoid cystic carcinoma of the oesophagus: the same tumour type? Histopathology. 1991;19(1):35–46.

    Article  PubMed  CAS  Google Scholar 

  207. Kobayashi Y, Nakanishi Y, Taniguchi H, Sekine S, Igaki H, Tachimori Y, et al. Histological diversity in basaloid squamous cell carcinoma of the esophagus. Dis Esophagus. 2009;22(3):231–8.

    Article  PubMed  CAS  Google Scholar 

  208. Osborn NK, Keate RF, Trastek VF, Nguyen CC. Verrucous carcinoma of the esophagus: clinicopathophysiologic features and treatment of a rare entity. Dig Dis Sci. 2003;48(3):465–74.

    Article  PubMed  CAS  Google Scholar 

  209. Lauwers GY, Grant LD, Scott GV, Carr NJ, Sobin LH. Spindle cell squamous carcinoma of the esophagus: analysis of ploidy and tumor proliferative activity in a series of 13 cases. Hum Pathol. 1998;29(8):863–8.

    Article  PubMed  CAS  Google Scholar 

  210. Hanada M, Nakano K, Ii Y, Yamashita H. Carcinosarcoma of the esophagus with osseous and cartilagenous production. A combined study of keratin immunohistochemistry and electron microscopy. Acta Pathol Jpn. 1984;34(3):669–78.

    PubMed  CAS  Google Scholar 

  211. Boone J, van Hillegersberg R, Offerhaus GJ, van Diest PJ, Borel Rinkes IH, Ten Kate FJ. Targets for molecular therapy in esophageal squamous cell carcinoma: an immunohistochemical analysis. Dis Esophagus. 2009;22(6):496–504.

    Article  PubMed  CAS  Google Scholar 

  212. Sawada G, Niida A, Hirata H, Komatsu H, Uchi R, Shimamura T, et al. An integrative analysis to identify driver genes in esophageal squamous cell carcinoma. PLoS One. 2015;10(10):e0139808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Montesano R, Hollstein M, Hainaut P. Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: a review. Int J Cancer. 1996;69(3):225–35.

    Article  PubMed  CAS  Google Scholar 

  214. Lagergren J, Bergstrom R, Nyren O. Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med. 1999;130(11):883–90.

    Article  PubMed  CAS  Google Scholar 

  215. Gatenby PA, Caygill CP, Ramus JR, Charlett A, Fitzgerald RC, Watson A. Short segment columnar-lined oesophagus: an underestimated cancer risk? A large cohort study of the relationship between Barrett's columnar-lined oesophagus segment length and adenocarcinoma risk. Eur J Gastroenterol Hepatol. 2007;19(11):969–75.

    Article  PubMed  Google Scholar 

  216. Lagergren J, Bergstrom R, Adami HO, Nyren O. Association between medications that relax the lower esophageal sphincter and risk for esophageal adenocarcinoma. Ann Intern Med. 2000;133(3):165–75.

    Article  PubMed  CAS  Google Scholar 

  217. Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst. 2005;97(2):142–6.

    Article  PubMed  Google Scholar 

  218. Vizcaino AP, Moreno V, Lambert R, Parkin DM. Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973-1995. Int J Cancer. 2002;99(6):860–8.

    Article  PubMed  CAS  Google Scholar 

  219. Corley DA, Levin TR, Habel LA, Weiss NS, Buffler PA. Surveillance and survival in Barrett’s adenocarcinomas: a population-based study. Gastroenterology. 2002;122(3):633–40.

    Article  PubMed  Google Scholar 

  220. Smith RR, Hamilton SR, Boitnott JK, Rogers EL. The spectrum of carcinoma arising in Barrett’s esophagus. A clinicopathologic study of 26 patients. Am J Surg Pathol. 1984;8(8):563–73.

    Article  PubMed  CAS  Google Scholar 

  221. Hamilton SR, Smith RR. The relationship between columnar epithelial dysplasia and invasive adenocarcinoma arising in Barrett’s esophagus. Am J Clin Pathol. 1987;87(3):301–12.

    Article  PubMed  CAS  Google Scholar 

  222. Chejfec G, Jablokow VR, Gould VE. Linitis plastica carcinoma of the esophagus. Cancer. 1983;51(11):2139–43.

    Article  PubMed  CAS  Google Scholar 

  223. Donahue JM, Nichols FC, Li Z, Schomas DA, Allen MS, Cassivi SD, et al. Complete pathologic response after neoadjuvant chemoradiotherapy for esophageal cancer is associated with enhanced survival. Ann Thorac Surg. 2009;87(2):392–8. discussion 8-9.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Hornick JL, Farraye FA, Odze RD. Prevalence and significance of prominent mucin pools in the esophagus post neoadjuvant chemoradiotherapy for Barrett’s-associated adenocarcinoma. Am J Surg Pathol. 2006;30(1):28–35.

    Article  PubMed  Google Scholar 

  225. Torres C, Turner JR, Wang HH, Richards W, Sugarbaker D, Shahsafaei A, et al. Pathologic prognostic factors in Barrett’s associated adenocarcinoma: a follow-up study of 96 patients. Cancer. 1999;85(3):520–8.

    Article  PubMed  CAS  Google Scholar 

  226. Rice TW, Patil DT, Blackstone EH. 8th edition AJCC/UICC staging of cancers of the esophagus and esophagogastric junction: application to clinical practice. Ann Cardiothorac Surg. 2017;6(2):119–30.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Hamilton K, Chiappori A, Olson S, Sawyers J, Johnson D, Washington K. Prevalence and prognostic significance of neuroendocrine cells in esophageal adenocarcinoma. Mod Pathol. 2000;13(5):475–81.

    Article  PubMed  CAS  Google Scholar 

  228. Yachida S, Nakanishi Y, Shimoda T, Nimura S, Igaki H, Tachimori Y, et al. Adenosquamous carcinoma of the esophagus. Clinicopathologic study of 18 cases. Oncology. 2004;66(3):218–25.

    Article  PubMed  Google Scholar 

  229. Gowryshankar A, Nagaraja V, Eslick GD. HER2 status in Barrett’s esophagus & esophageal cancer: a meta analysis. J Gastrointest Oncol. 2014;5(1):25–35.

    PubMed  PubMed Central  Google Scholar 

  230. Bartley AN, Washington MK, Ventura CB, Ismaila N, Colasacco C, Benson AB 3rd, et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med. 2016;140(12):1345–63.

    Article  PubMed  Google Scholar 

  231. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    Article  PubMed  CAS  Google Scholar 

  232. Hofmann M, Stoss O, Shi D, Buttner R, van de Vijver M, Kim W, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52(7):797–805.

    Article  PubMed  CAS  Google Scholar 

  233. Ajani JA, Bentrem DJ, Besh S, D’Amico TA, Das P, Denlinger C, et al. Gastric cancer, version 2.2013: featured updates to the NCCN Guidelines. J Natl Compr Cancer Netw. 2013;11(5):531–46.

    Article  CAS  Google Scholar 

  234. Bell-Thomson J, Haggitt RC, Ellis FH Jr. Mucoepidermoid and adenoid cystic carcinomas of the esophagus. J Thorac Cardiovasc Surg. 1980;79(3):438–46.

    Article  PubMed  CAS  Google Scholar 

  235. Woodard BH, Shelburne JD, Vollmer RT, Postlethwait RW. Mucoepidermoid carcinoma of the esophagus: a case report. Hum Pathol. 1978;9(3):352–4.

    Article  PubMed  CAS  Google Scholar 

  236. Sasajima K, Watanabe M, Takubo K, Takai A, Yamashita K, Onda M. Mucoepidermoid carcinoma of the esophagus: report of two cases and review of the literature. Endoscopy. 1990;22(3):140–3.

    Article  PubMed  CAS  Google Scholar 

  237. Akagi I, Miyashita M, Makino H, Nomura T, Ohkawa K, Tajiri T. Basaloid squamous cell carcinoma of the esophagus: report of two cases. J Nippon Med Sch. 2008;75(6):354–60.

    Article  PubMed  Google Scholar 

  238. Kabuto T, Taniguchi K, Iwanaga T, Terasawa T, Sano M, Tateishi R, et al. Primary adenoid cystic carcinoma of the esophagus: report of a case. Cancer. 1979;43(6):2452–6.

    Article  PubMed  CAS  Google Scholar 

  239. Hoda SA, Hajdu SI. Small cell carcinoma of the esophagus. Cytology and immunohistology in four cases. Acta Cytol. 1992;36(2):113–20.

    PubMed  CAS  Google Scholar 

  240. Modlin IM, Shapiro MD, Kidd M. An analysis of rare carcinoid tumors: clarifying these clinical conundrums. World J Surg. 2005;29(1):92–101.

    Article  PubMed  Google Scholar 

  241. Takubo K, Nakamura K, Sawabe M, Arai T, Esaki Y, Miyashita M, et al. Primary undifferentiated small cell carcinoma of the esophagus. Hum Pathol. 1999;30(2):216–21.

    Article  PubMed  CAS  Google Scholar 

  242. Cary NR, Barron DJ, McGoldrick JP, Wells FC. Combined oesophageal adenocarcinoma and carcinoid in Barrett’s oesophagitis: potential role of enterochromaffin-like cells in oesophageal malignancy. Thorax. 1993;48(4):404–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Chong FK, Graham JH, Madoff IM. Mucin-producing carcinoid (“composite tumor”) of upper third of esophagus: a variant of carcinoid tumor. Cancer. 1979;44(5):1853–9.

    Article  PubMed  CAS  Google Scholar 

  244. Maru DM, Khurana H, Rashid A, Correa AM, Anandasabapathy S, Krishnan S, et al. Retrospective study of clinicopathologic features and prognosis of high-grade neuroendocrine carcinoma of the esophagus. Am J Surg Pathol. 2008;32(9):1404–11.

    Article  PubMed  Google Scholar 

  245. Siegal A, Swartz A. Malignant carcinoid of oesophagus. Histopathology. 1986;10(7):761–5.

    Article  PubMed  CAS  Google Scholar 

  246. Nawroz IM. Malignant carcinoid tumour of oesophagus. Histopathology. 1987;11(8):879–80.

    Article  PubMed  CAS  Google Scholar 

  247. Kloppel G, Rindi G, Anlauf M, Perren A, Komminoth P. Site-specific biology and pathology of gastroenteropancreatic neuroendocrine tumors. Virchows Arch. 2007;451(Suppl 1):S9–27.

    Article  PubMed  Google Scholar 

  248. Chuah SK, Hu TH, Kuo CM, Chiu KW, Kuo CH, Wu KL, et al. Upper gastrointestinal carcinoid tumors incidentally found by endoscopic examinations. World J Gastroenterol. 2005;11(44):7028–32.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Modlin IM, Sandor A. An analysis of 8305 cases of carcinoid tumors. Cancer. 1997;79(4):813–29.

    Article  PubMed  CAS  Google Scholar 

  250. Yun JP, Zhang MF, Hou JH, Tian QH, Fu J, Liang XM, et al. Primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical features of 21 cases. BMC Cancer. 2007;7:38.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Lu J, Xue LY, Lu N, Zou SM, Liu XY, Wen P. Superficial primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical analysis of 15 cases. Dis Esophagus. 2010;23(2):153–9.

    Article  PubMed  CAS  Google Scholar 

  252. Travis WD, Linnoila RI, Tsokos MG, Hitchcock CL, Cutler GB Jr, Nieman L, et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol. 1991;15(6):529–53.

    Article  PubMed  CAS  Google Scholar 

  253. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243–60.

    Article  PubMed  Google Scholar 

  254. Briggs JC, Ibrahim NB. Oat cell carcinomas of the oesophagus: a clinico-pathological study of 23 cases. Histopathology. 1983;7(2):261–77.

    Article  PubMed  CAS  Google Scholar 

  255. Ho KJ, Herrera GA, Jones JM, Alexander CB. Small cell carcinoma of the esophagus: evidence for a unified histogenesis. Hum Pathol. 1984;15(5):460–8.

    Article  PubMed  CAS  Google Scholar 

  256. Correa P. A human model of gastric carcinogenesis. Cancer Res. 1988;48(13):3554–60.

    PubMed  CAS  Google Scholar 

  257. Ito H, Hata J, Yokozaki H, Nakatani H, Oda N, Tahara E. Tubular adenoma of the human stomach. An immunohistochemical analysis of gut hormones, serotonin, carcinoembryonic antigen, secretory component, and lysozyme. Cancer. 1986;58(10):2264–72.

    Article  PubMed  CAS  Google Scholar 

  258. Oberhuber G, Stolte M. Gastric polyps: an update of their pathology and biological significance. Virchows Arch. 2000;437(6):581–90.

    Article  PubMed  CAS  Google Scholar 

  259. Domizio P, Talbot IC, Spigelman AD, Williams CB, Phillips RK. Upper gastrointestinal pathology in familial adenomatous polyposis: results from a prospective study of 102 patients. J Clin Pathol. 1990;43(9):738–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Nakamura T, Nakano G. Histopathological classification and malignant change in gastric polyps. J Clin Pathol. 1985;38(7):754–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Abraham SC, Park SJ, Lee JH, Mugartegui L, Wu TT. Genetic alterations in gastric adenomas of intestinal and foveolar phenotypes. Mod Pathol. 2003;16(8):786–95.

    Article  PubMed  Google Scholar 

  262. Ito H, Yasui W, Yoshida K, Nakayama H, Tahara E. Depressed tubular adenoma of the stomach: pathological and immunohistochemical features. Histopathology. 1990;17(5):419–26.

    Article  PubMed  CAS  Google Scholar 

  263. Lauwers GY, Riddell RH. Gastric epithelial dysplasia. Gut. 1999;45(5):784–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Tosi P, Baak JP, Luzi P, Miracco C, Lio R, Barbini P. Morphometric distinction of low- and high-grade dysplasias in gastric biopsies. Hum Pathol. 1989;20(9):839–44.

    Article  PubMed  CAS  Google Scholar 

  265. Lansdown M, Quirke P, Dixon MF, Axon AT, Johnston D. High grade dysplasia of the gastric mucosa: a marker for gastric carcinoma. Gut. 1990;31(9):977–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Vieth M, Kushima R, Borchard F, Stolte M. Pyloric gland adenoma: a clinico-pathological analysis of 90 cases. Virchows Arch. 2003;442(4):317–21.

    Article  PubMed  CAS  Google Scholar 

  267. Chen ZM, Scudiere JR, Abraham SC, Montgomery E. Pyloric gland adenoma: an entity distinct from gastric foveolar type adenoma. Am J Surg Pathol. 2009;33(2):186–93.

    Article  PubMed  Google Scholar 

  268. Stewart BW, Wild CP. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.

    Google Scholar 

  269. Locke GR 3rd, Talley NJ, Carpenter HA, Harmsen WS, Zinsmeister AR, Melton LJ 3rd. Changes in the site- and histology-specific incidence of gastric cancer during a 50-year period. Gastroenterology. 1995;109(6):1750–6.

    Article  PubMed  Google Scholar 

  270. Kuipers EJ. Helicobacter pylori and the risk and management of associated diseases: gastritis, ulcer disease, atrophic gastritis and gastric cancer. Aliment Pharmacol Ther. 1997;11(Suppl 1):71–88.

    Article  PubMed  Google Scholar 

  271. Henson DE, Dittus C, Younes M, Nguyen H, Albores-Saavedra J. Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973-2000: increase in the signet ring cell type. Arch Pathol Lab Med. 2004;128(7):765–70.

    Article  PubMed  Google Scholar 

  272. Cameron AJ, Lomboy CT, Pera M, Carpenter HA. Adenocarcinoma of the esophagogastric junction and Barrett’s esophagus. Gastroenterology. 1995;109(5):1541–6.

    Article  PubMed  CAS  Google Scholar 

  273. Wijnhoven BP, Siersema PD, Hop WC, van Dekken H, Tilanus HW. Adenocarcinomas of the distal oesophagus and gastric cardia are one clinical entity. Rotterdam Oesophageal Tumour Study Group. Br J Surg. 1999;86(4):529–35.

    Article  PubMed  CAS  Google Scholar 

  274. Siewert JR, Stein HJ. Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg. 1998;85(11):1457–9.

    Article  PubMed  CAS  Google Scholar 

  275. Allum WH, Powell DJ, McConkey CC, Fielding JW. Gastric cancer: a 25-year review. Br J Surg. 1989;76(6):535–40.

    Article  PubMed  CAS  Google Scholar 

  276. Capella C, Frigerio B, Cornaggia M, Solcia E, Pinzon-Trujillo Y, Chejfec G. Gastric parietal cell carcinoma--a newly recognized entity: light microscopic and ultrastructural features. Histopathology. 1984;8(5):813–24.

    Article  PubMed  CAS  Google Scholar 

  277. Bonar SF, Sweeney EC. The prevalence, prognostic significance and hormonal content of endocrine cells in gastric cancer. Histopathology. 1986;10(1):53–63.

    Article  PubMed  CAS  Google Scholar 

  278. Ueyama H, Yao T, Nakashima Y, Hirakawa K, Oshiro Y, Hirahashi M, et al. Gastric adenocarcinoma of fundic gland type (chief cell predominant type): proposal for a new entity of gastric adenocarcinoma. Am J Surg Pathol. 2010;34(5):609–19.

    Article  PubMed  Google Scholar 

  279. Singhi AD, Lazenby AJ, Montgomery EA. Gastric adenocarcinoma with chief cell differentiation: a proposal for reclassification as oxyntic gland polyp/adenoma. Am J Surg Pathol. 2012;36(7):1030–5.

    Article  PubMed  Google Scholar 

  280. Ooi A, Nakanishi I, Itoh T, Ueda H, Mai M. Predominant Paneth cell differentiation in an intestinal type gastric cancer. Pathol Res Pract. 1991;187(2–3):220–5.

    Article  PubMed  CAS  Google Scholar 

  281. Fiocca R, Villani L, Tenti P, Solcia E, Cornaggia M, Frigerio B, et al. Characterization of four main cell types in gastric cancer: foveolar, mucopeptic, intestinal columnar and goblet cells. An histopathologic, histochemical and ultrastructural study of “early” and “advanced” tumours. Pathol Res Pract. 1987;182(3):308–25.

    Article  PubMed  CAS  Google Scholar 

  282. Setala LP, Kosma VM, Marin S, Lipponen PK, Eskelinen MJ, Syrjanen KJ, et al. Prognostic factors in gastric cancer: the value of vascular invasion, mitotic rate and lymphoplasmacytic infiltration. Br J Cancer. 1996;74(5):766–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Tanaka A, Watanabe T, Okuno K, Yasutomi M. Perineural invasion as a predictor of recurrence of gastric cancer. Cancer. 1994;73(3):550–5.

    Article  PubMed  CAS  Google Scholar 

  284. Ming SC. Gastric carcinoma. A pathobiological classification. Cancer. 1977;39(6):2475–85.

    Article  PubMed  CAS  Google Scholar 

  285. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

    Article  PubMed  CAS  Google Scholar 

  286. Roy P, Piard F, Dusserre-Guion L, Martin L, Michiels-Marzais D, Faivre J. Prognostic comparison of the pathological classifications of gastric cancer: a population-based study. Histopathology. 1998;33(4):304–10.

    Article  PubMed  CAS  Google Scholar 

  287. Berlth F, Bollschweiler E, Drebber U, Hoelscher AH, Moenig S. Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value. World J Gastroenterol. 2014;20(19):5679–84.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Mori M, Sakaguchi H, Akazawa K, Tsuneyoshi M, Sueishi K, Sugimachi K. Correlation between metastatic site, histological type, and serum tumor markers of gastric carcinoma. Hum Pathol. 1995;26(5):504–8.

    Article  PubMed  CAS  Google Scholar 

  289. Carneiro F, Huntsman DG, Smyrk TC, Owen DA, Seruca R, Pharoah P, et al. Model of the early development of diffuse gastric cancer in E-cadherin mutation carriers and its implications for patient screening. J Pathol. 2004;203(2):681–7.

    Article  PubMed  CAS  Google Scholar 

  290. Fiocca R, Villani L, Tenti P, Cornaggia M, Finzi G, Riva C, et al. The foveolar cell component of gastric cancer. Hum Pathol. 1990;21(3):260–70.

    Article  PubMed  CAS  Google Scholar 

  291. Machado JC, Nogueira AM, Carneiro F, Reis CA, Sobrinho-Simoes M. Gastric carcinoma exhibits distinct types of cell differentiation: an immunohistochemical study of trefoil peptides (TFF1 and TFF2) and mucins (MUC1, MUC2, MUC5AC, and MUC6). J Pathol. 2000;190(4):437–43.

    Article  PubMed  CAS  Google Scholar 

  292. Oda K, Tamaru J, Takenouchi T, Mikata A, Nunomura M, Saitoh N, et al. Association of Epstein-Barr virus with gastric carcinoma with lymphoid stroma. Am J Pathol. 1993;143(4):1063–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  293. Matsunou H, Konishi F, Hori H, Ikeda T, Sasaki K, Hirose Y, et al. Characteristics of Epstein-Barr virus-associated gastric carcinoma with lymphoid stroma in Japan. Cancer. 1996;77(10):1998–2004.

    Article  PubMed  CAS  Google Scholar 

  294. Minamoto T, Mai M, Watanabe K, Ooi A, Kitamura T, Takahashi Y, et al. Medullary carcinoma with lymphocytic infiltration of the stomach. Clinicopathologic study of 27 cases and immunohistochemical analysis of the subpopulations of infiltrating lymphocytes in the tumor. Cancer. 1990;66(5):945–52.

    Article  PubMed  CAS  Google Scholar 

  295. Nakamura S, Ueki T, Yao T, Ueyama T, Tsuneyoshi M. Epstein-Barr virus in gastric carcinoma with lymphoid stroma. Special reference to its detection by the polymerase chain reaction and in situ hybridization in 99 tumors, including a morphologic analysis. Cancer. 1994;73(9):2239–49.

    Article  PubMed  CAS  Google Scholar 

  296. dos Santos NR, Seruca R, Constancia M, Seixas M, Sobrinho-Simoes M. Microsatellite instability at multiple loci in gastric carcinoma: clinicopathologic implications and prognosis. Gastroenterology. 1996;110(1):38–44.

    Article  PubMed  Google Scholar 

  297. Hisamichi S. Screening for gastric cancer. World J Surg. 1989;13(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  298. Marubashi S, Yano H, Monden T, Tateishi H, Kanoh T, Iwazawa T, et al. Primary squamous cell carcinoma of the stomach. Gastric Cancer. 1999;2(2):136–41.

    Article  PubMed  Google Scholar 

  299. Mori M, Iwashita A, Enjoji M. Adenosquamous carcinoma of the stomach. A clinicopathologic analysis of 28 cases. Cancer. 1986;57(2):333–9.

    Article  PubMed  CAS  Google Scholar 

  300. Yoshida K, Manabe T, Tsunoda T, Kimoto M, Tadaoka Y, Shimizu M. Early gastric cancer of adenosquamous carcinoma type: report of a case and review of literature. Jpn J Clin Oncol. 1996;26(4):252–7.

    Article  PubMed  CAS  Google Scholar 

  301. Robey-Cafferty SS, Grignon DJ, Ro JY, Cleary KR, Ayala AG, Ordonez NG, et al. Sarcomatoid carcinoma of the stomach. A report of three cases with immunohistochemical and ultrastructural observations. Cancer. 1990;65(7):1601–6.

    Article  PubMed  CAS  Google Scholar 

  302. Randjelovic T, Filipovic B, Babic D, Cemerikic V, Filipovic B. Carcinosarcoma of the stomach: a case report and review of the literature. World J Gastroenterol. 2007;13(41):5533–6.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Ikeda Y, Kosugi S, Nishikura K, Ohashi M, Kanda T, Kobayashi T, et al. Gastric carcinosarcoma presenting as a huge epigastric mass. Gastric Cancer. 2007;10(1):63–8.

    Article  PubMed  Google Scholar 

  304. Dundas SA, Slater DN, Wagner BE, Mills PA. Gastric adenocarcinoleiomyosarcoma: a light, electron microscopic and immunohistological study. Histopathology. 1988;13(3):347–50.

    Article  PubMed  CAS  Google Scholar 

  305. Nakayama Y, Murayama H, Iwasaki H, Iwanaga S, Kikuchi M, Ikeda S, et al. Gastric carcinosarcoma (sarcomatoid carcinoma) with rhabdomyoblastic and osteoblastic differentiation. Pathol Int. 1997;47(8):557–63.

    Article  PubMed  CAS  Google Scholar 

  306. Yamazaki K. A gastric carcinosarcoma with neuroendocrine cell differentiation and undifferentiated spindle-shaped sarcoma component possibly progressing from the conventional tubular adenocarcinoma; an immunohistochemical and ultrastructural study. Virchows Arch. 2003;442(1):77–81.

    Article  PubMed  Google Scholar 

  307. Sato Y, Shimozono T, Kawano S, Toyoda K, Onoe K, Asada Y, et al. Gastric carcinosarcoma, coexistence of adenosquamous carcinoma and rhabdomyosarcoma: a case report. Histopathology. 2001;39(5):543–4.

    Article  PubMed  CAS  Google Scholar 

  308. Kallakury BV, Bui HX, del Rosario A, Wallace J, Solis OG, Ross JS. Primary gastric adenosarcoma. Arch Pathol Lab Med. 1993;117(3):299–301.

    PubMed  CAS  Google Scholar 

  309. Inagawa S, Shimazaki J, Hori M, Yoshimi F, Adachi S, Kawamoto T, et al. Hepatoid adenocarcinoma of the stomach. Gastric Cancer. 2001;4(1):43–52.

    Article  PubMed  CAS  Google Scholar 

  310. Yamazawa S, Ushiku T, Shinozaki-Ushiku A, Hayashi A, Iwasaki A, Abe H, et al. Gastric cancer with primitive enterocyte phenotype: an aggressive subgroup of intestinal-type adenocarcinoma. Am J Surg Pathol. 2017;41(7):989–97.

    Article  PubMed  Google Scholar 

  311. Liu X, Cheng Y, Sheng W, Lu H, Xu X, Xu Y, et al. Analysis of clinicopathologic features and prognostic factors in hepatoid adenocarcinoma of the stomach. Am J Surg Pathol. 2010;34(10):1465–71.

    Article  PubMed  Google Scholar 

  312. Ishikura H, Kirimoto K, Shamoto M, Miyamoto Y, Yamagiwa H, Itoh T, et al. Hepatoid adenocarcinomas of the stomach. An analysis of seven cases. Cancer. 1986;58(1):119–26.

    Article  PubMed  CAS  Google Scholar 

  313. Motoyama T, Aizawa K, Watanabe H, Fukase M, Saito K. Alpha-fetoprotein producing gastric carcinomas: a comparative study of three different subtypes. Acta Pathol Jpn. 1993;43(11):654–61.

    PubMed  CAS  Google Scholar 

  314. Ming SC. Cellular and molecular pathology of gastric carcinoma and precursor lesions: a critical review. Gastric Cancer. 1998;1(1):31–50.

    Article  PubMed  Google Scholar 

  315. Petrella T, Montagnon J, Roignot P, Van Nieuvanhuyse A, Matagrin C, Michiels-Marzais D, et al. Alphafetoprotein-producing gastric adenocarcinoma. Histopathology. 1995;26(2):171–5.

    Article  PubMed  CAS  Google Scholar 

  316. Byrne D, Holley MP, Cuschieri A. Parietal cell carcinoma of the stomach: association with long-term survival after curative resection. Br J Cancer. 1988;58(1):85–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  317. Hayashi I, Muto Y, Fujii Y, Morimatsu M. Mucoepidermoid carcinoma of the stomach. J Surg Oncol. 1987;34(2):94–9.

    Article  PubMed  CAS  Google Scholar 

  318. Amrikachi M, Ro JY, Ordonez NG, Ayala AG. Adenocarcinomas of the gastrointestinal tract with prominent rhabdoid features. Ann Diagn Pathol. 2002;6(6):357–63.

    Article  PubMed  Google Scholar 

  319. Oda, Kondo H, Yamao T, Saito D, Ono H, Gotoda T, et al. Metastatic tumors to the stomach: analysis of 54 patients diagnosed at endoscopy and 347 autopsy cases. Endoscopy. 2001;33(6):507–10.

    Article  PubMed  CAS  Google Scholar 

  320. Kim GH, Ahn JY, Jung HY, Park YS, Kim MJ, Choi KD, et al. Clinical and endoscopic features of metastatic tumors in the stomach. Gut Liver. 2015;9(5):615–22.

    PubMed  Google Scholar 

  321. Yang Y, Lu S, Zeng W, Xie S, Xiao S. GATA3 expression in clinically useful groups of breast carcinoma: a comparison with GCDFP15 and mammaglobin for identifying paired primary and metastatic tumors. Ann Diagn Pathol. 2017;26:1–5.

    Article  PubMed  Google Scholar 

  322. O’Connell FP, Wang HH, Odze RD. Utility of immunohistochemistry in distinguishing primary adenocarcinomas from metastatic breast carcinomas in the gastrointestinal tract. Arch Pathol Lab Med. 2005;129(3):338–47.

    Article  PubMed  Google Scholar 

  323. Lau SK, Weiss LM, Chu PG. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol. 2004;122(1):61–9.

    Article  PubMed  Google Scholar 

  324. Patel DS, Khandeparkar SGS, Joshi AR, Kulkarni MM, Dhande B, Lengare P, et al. Immunohistochemical Study of MUC1, MUC2 and MUC5AC expression in primary breast carcinoma. J Clin Diagn Res. 2017;11(4):EC30–EC4.

    PubMed  PubMed Central  CAS  Google Scholar 

  325. Brito MJ, Williams GT, Thompson H, Filipe MI. Expression of p53 in early (T1) gastric carcinoma and precancerous adjacent mucosa. Gut. 1994;35(12):1697–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  326. Milne AN, Carvalho R, Morsink FM, Musler AR, de Leng WW, Ristimaki A, et al. Early-onset gastric cancers have a different molecular expression profile than conventional gastric cancers. Mod Pathol. 2006;19(4):564–72.

    Article  PubMed  CAS  Google Scholar 

  327. Lee JH, Abraham SC, Kim HS, Nam JH, Choi C, Lee MC, et al. Inverse relationship between APC gene mutation in gastric adenomas and development of adenocarcinoma. Am J Pathol. 2002;161(2):611–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  328. Park K, Kim SJ, Bang YJ, Park JG, Kim NK, Roberts AB, et al. Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. Proc Natl Acad Sci U S A. 1994;91(19):8772–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  329. Hara T, Ooi A, Kobayashi M, Mai M, Yanagihara K, Nakanishi I. Amplification of c-myc, K-sam, and c-met in gastric cancers: detection by fluorescence in situ hybridization. Lab Investig. 1998;78(9):1143–53.

    PubMed  CAS  Google Scholar 

  330. Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M, et al. A novel germ line juxtamembrane met mutation in human gastric cancer. Oncogene. 2000;19(43):4947–53.

    Article  PubMed  CAS  Google Scholar 

  331. Boku N. HER2-positive gastric cancer. Gastric Cancer. 2014;17(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  332. Jardim DL, de Melo GD, Falchook GS, Janku F, Zinner R, Wheler JJ, et al. MET aberrations and c-MET inhibitors in patients with gastric and esophageal cancers in a phase I unit. Oncotarget. 2014;5(7):1837–45.

    Article  PubMed  PubMed Central  Google Scholar 

  333. Metzger ML, Behrens HM, Boger C, Haag J, Kruger S, Rocken C. MET in gastric cancer--discarding a 10% cutoff rule. Histopathology. 2016;68(2):241–53.

    Article  PubMed  Google Scholar 

  334. Ha SY, Lee J, Kang SY, Do IG, Ahn S, Park JO, et al. MET overexpression assessed by new interpretation method predicts gene amplification and poor survival in advanced gastric carcinomas. Mod Pathol. 2013;26(12):1632–41.

    Article  PubMed  CAS  Google Scholar 

  335. Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, Lee BL, et al. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 2012;107(2):325–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  336. Yildiz Y, Sokmensuer C, Yalcin S. Evaluation of c-Met, HGF, and HER-2 expressions in gastric carcinoma and their association with other clinicopathological factors. Onco Targets Ther. 2016;9:5809–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Wu MS, Lee CW, Shun CT, Wang HP, Lee WJ, Chang MC, et al. Distinct clinicopathologic and genetic profiles in sporadic gastric cancer with different mutator phenotypes. Genes Chromosomes Cancer. 2000;27(4):403–11.

    Article  PubMed  CAS  Google Scholar 

  338. Chung DC, Yoon SS, Lauwers GY, Patel D. Case records of the Massachusetts General Hospital. Case 22-2007. A woman with a family history of gastric and breast cancer. N Engl J Med. 2007;357(3):283–91.

    Article  PubMed  CAS  Google Scholar 

  339. Pedrazzani C, Corso G, Marrelli D, Roviello F. E-cadherin and hereditary diffuse gastric cancer. Surgery. 2007;142(5):645–57.

    Article  PubMed  Google Scholar 

  340. Caldas C, Carneiro F, Lynch HT, Yokota J, Wiesner GL, Powell SM, et al. Familial gastric cancer: overview and guidelines for management. J Med Genet. 1999;36(12):873–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  341. Blair V, Martin I, Shaw D, Winship I, Kerr D, Arnold J, et al. Hereditary diffuse gastric cancer: diagnosis and management. Clin Gastroenterol Hepatol. 2006;4(3):262–75.

    Article  PubMed  CAS  Google Scholar 

  342. Keller G, Vogelsang H, Becker I, Hutter J, Ott K, Candidus S, et al. Diffuse type gastric and lobular breast carcinoma in a familial gastric cancer patient with an E-cadherin germline mutation. Am J Pathol. 1999;155(2):337–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Huntsman DG, Carneiro F, Lewis FR, MacLeod PM, Hayashi A, Monaghan KG, et al. Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N Engl J Med. 2001;344(25):1904–9.

    Article  PubMed  CAS  Google Scholar 

  344. Rogers WM, Dobo E, Norton JA, Van Dam J, Jeffrey RB, Huntsman DG, et al. Risk-reducing total gastrectomy for germline mutations in E-cadherin (CDH1): pathologic findings with clinical implications. Am J Surg Pathol. 2008;32(6):799–809.

    Article  PubMed  Google Scholar 

  345. Aarnio M, Salovaara R, Aaltonen LA, Mecklin JP, Jarvinen HJ. Features of gastric cancer in hereditary non-polyposis colorectal cancer syndrome. Int J Cancer. 1997;74(5):551–5.

    Article  PubMed  CAS  Google Scholar 

  346. Abraham SC, Nobukawa B, Giardiello FM, Hamilton SR, Wu TT. Fundic gland polyps in familial adenomatous polyposis: neoplasms with frequent somatic adenomatous polyposis coli gene alterations. Am J Pathol. 2000;157(3):747–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  347. Hofgartner WT, Thorp M, Ramus MW, Delorefice G, Chey WY, Ryan CK, et al. Gastric adenocarcinoma associated with fundic gland polyps in a patient with attenuated familial adenomatous polyposis. Am J Gastroenterol. 1999;94(8):2275–81.

    Article  PubMed  CAS  Google Scholar 

  348. Zwick A, Munir M, Ryan CK, Gian J, Burt RW, Leppert M, et al. Gastric adenocarcinoma and dysplasia in fundic gland polyps of a patient with attenuated adenomatous polyposis coli. Gastroenterology. 1997;113(2):659–63.

    Article  PubMed  CAS  Google Scholar 

  349. Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.

    Article  CAS  Google Scholar 

  350. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449–56.

    Article  PubMed  CAS  Google Scholar 

  351. Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology. 2013;145(3):554–65.

    Article  PubMed  CAS  Google Scholar 

  352. Setia N, Agoston AT, Han HS, Mullen JT, Duda DG, Clark JW, et al. A protein and mRNA expression-based classification of gastric cancer. Mod Pathol. 2016;29(7):772–84.

    Article  PubMed  CAS  Google Scholar 

  353. Liu Z, Mira JL, Cruz-Caudillo JC. Primary gastric choriocarcinoma: a case report and review of the literature. Arch Pathol Lab Med. 2001;125(12):1601–4.

    Article  PubMed  CAS  Google Scholar 

  354. Imai Y, Kawabe T, Takahashi M, Matsumura M, Komatsu Y, Hamada E, et al. A case of primary gastric choriocarcinoma and a review of the Japanese literature. J Gastroenterol. 1994;29(5):642–6.

    Article  PubMed  CAS  Google Scholar 

  355. Namikawa T, Kobayashi M, Okabayashi T, Ozaki S, Nakamura S, Yamashita K, et al. Primary gastric small cell carcinoma: report of a case and review of the literature. Med Mol Morphol. 2005;38(4):256–61.

    Article  PubMed  Google Scholar 

  356. Matsui K, Jin XM, Kitagawa M, Miwa A. Clinicopathologic features of neuroendocrine carcinomas of the stomach: appraisal of small cell and large cell variants. Arch Pathol Lab Med. 1998;122(11):1010–7.

    PubMed  CAS  Google Scholar 

  357. Kusayanagi S, Konishi K, Miyasaka N, Sasaki K, Kurahashi T, Kaneko K, et al. Primary small cell carcinoma of the stomach. J Gastroenterol Hepatol. 2003;18(6):743–7.

    Article  PubMed  Google Scholar 

  358. Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology. 2005;128(6):1717–51.

    Article  PubMed  Google Scholar 

  359. Laine L, Ahnen D, McClain C, Solcia E, Walsh JH. Review article: potential gastrointestinal effects of long-term acid suppression with proton pump inhibitors. Aliment Pharmacol Ther. 2000;14(6):651–68.

    Article  PubMed  CAS  Google Scholar 

  360. La Rosa S, Inzani F, Vanoli A, Klersy C, Dainese L, Rindi G, et al. Histologic characterization and improved prognostic evaluation of 209 gastric neuroendocrine neoplasms. Hum Pathol. 2011;42(10):1373–84.

    Article  PubMed  CAS  Google Scholar 

  361. Rindi G, Bordi C, Rappel S, La Rosa S, Stolte M, Solcia E. Gastric carcinoids and neuroendocrine carcinomas: pathogenesis, pathology, and behavior. World J Surg. 1996;20(2):168–72.

    Article  PubMed  CAS  Google Scholar 

  362. Thomas RM, Baybick JH, Elsayed AM, Sobin LH. Gastric carcinoids. An immunohistochemical and clinicopathologic study of 104 patients. Cancer. 1994;73(8):2053–8.

    Article  PubMed  CAS  Google Scholar 

  363. Borch K, Renvall H, Kullman E, Wilander E. Gastric carcinoid associated with the syndrome of hypergastrinemic atrophic gastritis. A prospective analysis of 11 cases. Am J Surg Pathol. 1987;11(6):435–44.

    Article  PubMed  CAS  Google Scholar 

  364. Solcia E, Capella C, Fiocca R, Rindi G, Rosai J. Gastric argyrophil carcinoidosis in patients with Zollinger-Ellison syndrome due to type 1 multiple endocrine neoplasia. A newly recognized association. Am J Surg Pathol. 1990;14(6):503–13.

    Article  PubMed  CAS  Google Scholar 

  365. Ooi A, Ota M, Katsuda S, Nakanishi I, Sugawara H, Takahashi I. An unusual case of multiple gastric carcinoids associated with diffuse endocrine cell hyperplasia and parietal cell hypertrophy. Endocr Pathol. 1995;6(3):229–37.

    Article  PubMed  Google Scholar 

  366. Rindi G, Azzoni C, La Rosa S, Klersy C, Paolotti D, Rappel S, et al. ECL cell tumor and poorly differentiated endocrine carcinoma of the stomach: prognostic evaluation by pathological analysis. Gastroenterology. 1999;116(3):532–42.

    Article  PubMed  CAS  Google Scholar 

  367. Carney JA, Go VL, Fairbanks VF, Moore SB, Alport EC, Nora FE. The syndrome of gastric argyrophil carcinoid tumors and nonantral gastric atrophy. Ann Intern Med. 1983;99(6):761–6.

    Article  PubMed  CAS  Google Scholar 

  368. Muller J, Kirchner T, Muller-Hermelink HK. Gastric endocrine cell hyperplasia and carcinoid tumors in atrophic gastritis type A. Am J Surg Pathol. 1987;11(12):909–17.

    Article  PubMed  CAS  Google Scholar 

  369. Pandol SJ. The exocrine pancreas. Colloquium series on integrated systems physiology: from molecule to function to disease. San Rafael: Morgan & Claypool Life Sciences; 2010.

    Google Scholar 

  370. Stelow EB, Adams RB, Moskaluk CA. The prevalence of pancreatic intraepithelial neoplasia in pancreata with uncommon types of primary neoplasms. Am J Surg Pathol. 2006;30(1):36–41.

    Article  PubMed  Google Scholar 

  371. Brockie E, Anand A, Albores-Saavedra J. Progression of atypical ductal hyperplasia/carcinoma in situ of the pancreas to invasive adenocarcinoma. Ann Diagn Pathol. 1998;2(5):286–92.

    Article  PubMed  CAS  Google Scholar 

  372. Brat DJ, Lillemoe KD, Yeo CJ, Warfield PB, Hruban RH. Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas. Am J Surg Pathol. 1998;22(2):163–9.

    Article  PubMed  CAS  Google Scholar 

  373. Basturk O, Hong SM, Wood LD, Adsay NV, Albores-Saavedra J, Biankin AV, et al. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol. 2015;39(12):1730–41.

    Article  PubMed  PubMed Central  Google Scholar 

  374. Hruban RH, Takaori K, Klimstra DS, Adsay NV, Albores-Saavedra J, Biankin AV, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2004;28(8):977–87.

    Article  PubMed  Google Scholar 

  375. Chen J, Baithun SI. Morphological study of 391 cases of exocrine pancreatic tumours with special reference to the classification of exocrine pancreatic carcinoma. J Pathol. 1985;146(1):17–29.

    Article  PubMed  CAS  Google Scholar 

  376. Adsay V, Logani S, Sarkar F, Crissman J, Vaitkevicius V. Foamy gland pattern of pancreatic ductal adenocarcinoma: a deceptively benign-appearing variant. Am J Surg Pathol. 2000;24(4):493–504.

    Article  PubMed  CAS  Google Scholar 

  377. Bagci P, Andea AA, Basturk O, Jang KT, Erbarut I, Adsay V. Large duct type invasive adenocarcinoma of the pancreas with microcystic and papillary patterns: a potential microscopic mimic of non-invasive ductal neoplasia. Mod Pathol. 2012;25(3):439–48.

    Article  PubMed  Google Scholar 

  378. Dursun N, Feng J, Basturk O, Bandyopadhyay S, Cheng JD, Adsay VN. Vacuolated cell pattern of pancreatobiliary adenocarcinoma: a clinicopathological analysis of 24 cases of a poorly recognized distinctive morphologic variant important in the differential diagnosis. Virchows Arch. 2010;457(6):643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  379. Zerbi A, De Nardi P, Braga M, Radice F, Sironi M, Di Carlo V. An oncocytic carcinoma of the pancreas with pulmonary and subcutaneous metastases. Pancreas. 1993;8(1):116–9.

    Article  PubMed  CAS  Google Scholar 

  380. Bandyopadhyay S, Basturk O, Coban I, Thirabanjasak D, Liang H, Altinel D, et al. Isolated solitary ducts (naked ducts) in adipose tissue: a specific but underappreciated finding of pancreatic adenocarcinoma and one of the potential reasons of understaging and high recurrence rate. Am J Surg Pathol. 2009;33(3):425–9.

    Article  PubMed  Google Scholar 

  381. Luttges J, Schemm S, Vogel I, Hedderich J, Kremer B, Kloppel G. The grade of pancreatic ductal carcinoma is an independent prognostic factor and is superior to the immunohistochemical assessment of proliferation. J Pathol. 2000;191(2):154–61.

    Article  PubMed  CAS  Google Scholar 

  382. Adsay NV, Basturk O, Bonnett M, Kilinc N, Andea AA, Feng J, et al. A proposal for a new and more practical grading scheme for pancreatic ductal adenocarcinoma. Am J Surg Pathol. 2005;29(6):724–33.

    Article  PubMed  Google Scholar 

  383. Giulianotti PC, Boggi U, Fornaciari G, Bruno J, Rossi G, Giardino D, et al. Prognostic value of histological grading in ductal adenocarcinoma of the pancreas. Kloppel vs TNM grading. Int J Pancreatol. 1995;17(3):279–89.

    Article  PubMed  CAS  Google Scholar 

  384. Duval JV, Savas L, Banner BF. Expression of cytokeratins 7 and 20 in carcinomas of the extrahepatic biliary tract, pancreas, and gallbladder. Arch Pathol Lab Med. 2000;124(8):1196–200.

    Article  PubMed  CAS  Google Scholar 

  385. Lee MJ, Lee HS, Kim WH, Choi Y, Yang M. Expression of mucins and cytokeratins in primary carcinomas of the digestive system. Mod Pathol. 2003;16(5):403–10.

    Article  PubMed  Google Scholar 

  386. Luttges J, Zamboni G, Longnecker D, Kloppel G. The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma. Am J Surg Pathol. 2001;25(7):942–8.

    Article  PubMed  CAS  Google Scholar 

  387. Andrianifahanana M, Moniaux N, Schmied BM, Ringel J, Friess H, Hollingsworth MA, et al. Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin Cancer Res. 2001;7(12):4033–40.

    PubMed  CAS  Google Scholar 

  388. Monges GM, Mathoulin-Portier MP, Acres RB, Houvenaeghel GF, Giovannini MF, Seitz JF, et al. Differential MUC 1 expression in normal and neoplastic human pancreatic tissue. An immunohistochemical study of 60 samples. Am J Clin Pathol. 1999;112(5):635–40.

    Article  PubMed  CAS  Google Scholar 

  389. Moy AP, Arora K, Deshpande V. Albumin expression distinguishes bile duct adenomas from metastatic adenocarcinoma. Histopathology. 2016;69(3):423–30.

    Article  PubMed  Google Scholar 

  390. Wilentz RE, Su GH, Dai JL, Sparks AB, Argani P, Sohn TA, et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas : a new marker of DPC4 inactivation. Am J Pathol. 2000;156(1):37–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  391. Tascilar M, Offerhaus GJ, Altink R, Argani P, Sohn TA, Yeo CJ, et al. Immunohistochemical labeling for the Dpc4 gene product is a specific marker for adenocarcinoma in biopsy specimens of the pancreas and bile duct. Am J Clin Pathol. 2001;116(6):831–7.

    Article  PubMed  CAS  Google Scholar 

  392. Adsay NV, Pierson C, Sarkar F, Abrams J, Weaver D, Conlon KC, et al. Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol. 2001;25(1):26–42.

    Article  PubMed  CAS  Google Scholar 

  393. Seidel G, Zahurak M, Iacobuzio-Donahue C, Sohn TA, Adsay NV, Yeo CJ, et al. Almost all infiltrating colloid carcinomas of the pancreas and periampullary region arise from in situ papillary neoplasms: a study of 39 cases. Am J Surg Pathol. 2002;26(1):56–63.

    Article  PubMed  Google Scholar 

  394. Kardon DE, Thompson LD, Przygodzki RM, Heffess CS. Adenosquamous carcinoma of the pancreas: a clinicopathologic series of 25 cases. Mod Pathol. 2001;14(5):443–51.

    Article  PubMed  CAS  Google Scholar 

  395. Yamaguchi K, Enjoji M. Adenosquamous carcinoma of the pancreas: a clinicopathologic study. J Surg Oncol. 1991;47(2):109–16.

    Article  PubMed  CAS  Google Scholar 

  396. Hruban RH, Pitman MB, Klimstra DS, American Registry of Pathology, Armed Forces Institute of Pathology (U.S.). Tumors of the pancreas. Washington, D.C.: American Registry of Pathology in collaboration with the Armed Forces Institute of Pathology; 2007. xviii, 422 p.

    Google Scholar 

  397. Paal E, Thompson LD, Frommelt RA, Przygodzki RM, Heffess CS. A clinicopathologic and immunohistochemical study of 35 anaplastic carcinomas of the pancreas with a review of the literature. Ann Diagn Pathol. 2001;5(3):129–40.

    Article  PubMed  CAS  Google Scholar 

  398. Alguacil-Garcia A, Weiland LH. The histologic spectrum, prognosis, and histogenesis of the sarcomatoid carcinoma of the pancreas. Cancer. 1977;39(3):1181–9.

    Article  PubMed  CAS  Google Scholar 

  399. Dhall D, Klimstra DS. The cellular composition of osteoclastlike giant cell-containing tumors of the pancreatobiliary tree. Am J Surg Pathol. 2008;32(2):335–7. author response 7.

    Article  PubMed  Google Scholar 

  400. Dworak O, Wittekind C, Koerfgen HP, Gall FP. Osteoclastic giant cell tumor of the pancreas. An immunohistological study and review of the literature. Pathol Res Pract. 1993;189(2):228–31. discussion 32-4.

    Article  PubMed  CAS  Google Scholar 

  401. Han SS, Jang JY, Kim SW, Kim WH, Lee KU, Park YH. Analysis of long-term survivors after surgical resection for pancreatic cancer. Pancreas. 2006;32(3):271–5.

    Article  PubMed  Google Scholar 

  402. Banville N, Geraghty R, Fox E, Leahy DT, Green A, Keegan D, et al. Medullary carcinoma of the pancreas in a man with hereditary nonpolyposis colorectal cancer due to a mutation of the MSH2 mismatch repair gene. Hum Pathol. 2006;37(11):1498–502.

    Article  PubMed  CAS  Google Scholar 

  403. Wilentz RE, Goggins M, Redston M, Marcus VA, Adsay NV, Sohn TA, et al. Genetic, immunohistochemical, and clinical features of medullary carcinoma of the pancreas: a newly described and characterized entity. Am J Pathol. 2000;156(5):1641–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  404. Nakata B, Wang YQ, Yashiro M, Nishioka N, Tanaka H, Ohira M, et al. Prognostic value of microsatellite instability in resectable pancreatic cancer. Clin Cancer Res. 2002;8(8):2536–40.

    PubMed  CAS  Google Scholar 

  405. Hruban RH, Molina JM, Reddy MN, Boitnott JK. A neoplasm with pancreatic and hepatocellular differentiation presenting with subcutaneous fat necrosis. Am J Clin Pathol. 1987;88(5):639–45.

    Article  PubMed  CAS  Google Scholar 

  406. Marchegiani G, Gareer H, Parisi A, Capelli P, Bassi C, Salvia R. Pancreatic hepatoid carcinoma: a review of the literature. Dig Surg. 2013;30(4–6):425–33.

    Article  PubMed  Google Scholar 

  407. Adsay NV, Klimstra DS, Compton CC. Cystic lesions of the pancreas. Introduction. Semin Diagn Pathol. 2000;17(1):1–6.

    PubMed  CAS  Google Scholar 

  408. Albores-Saavedra J, Gould EW, Angeles-Angeles A, Henson DE. Cystic tumors of the pancreas. Pathol Annu. 1990;25(Pt 2):19–50.

    PubMed  Google Scholar 

  409. Adsay NV, Klimstra DS. Cystic forms of typically solid pancreatic tumors. Semin Diagn Pathol. 2000;17(1):81–8.

    PubMed  CAS  Google Scholar 

  410. Compton CC. Serous cystic tumors of the pancreas. Semin Diagn Pathol. 2000;17(1):43–55.

    PubMed  CAS  Google Scholar 

  411. Egawa N, Maillet B, Klöppel G, Schröder S, Mukai K. Serous oligocystic and ill-demarcated adenoma of the pancreas: a variant of serous cystic adenoma. Virchows Arch. 1994;424(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  412. Lewandrowski K, Warshaw A, Compton C. Macrocystic serous cystadenoma of the pancreas: a morphologic variant differing from microcystic adenoma. Hum Pathol. 1992;23(8):871–5.

    Article  PubMed  CAS  Google Scholar 

  413. Tseng JF, Warshaw AL, Sahani DV, Lauwers GY, Rattner DW, Fernandez-del CC. Serous cystadenoma of the pancreas: tumor growth rates and recommendations for treatment. Ann Surg. 2005;242(3):413–9. discussion 9-21.

    Article  PubMed  PubMed Central  Google Scholar 

  414. King JC, Ng TT, White SC, Cortina G, Reber HA, Hines OJ. Pancreatic serous cystadenocarcinoma: a case report and review of the literature. J Gastrointest Surg. 2009;13(10):1864–8.

    Article  PubMed  PubMed Central  Google Scholar 

  415. Bramis K, Petrou A, Papalambros A, Manzelli A, Mantonakis E, Brennan N, et al. Serous cystadenocarcinoma of the pancreas: report of a case and management reflections. World J Surg Oncol. 2012;10:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  416. Girelli R, Bassi C, Falconi M, De Santis L, Bonora A, Caldiron E, et al. Pancreatic cystic manifestations in von Hippel-Lindau disease. Int J Pancreatol. 1997;22(2):101–9.

    Article  PubMed  CAS  Google Scholar 

  417. Hough DM, Stephens DH, Johnson CD, Binkovitz LA. Pancreatic lesions in von Hippel-Lindau disease: prevalence, clinical significance, and CT findings. AJR Am J Roentgenol. 1994;162(5):1091–4.

    Article  PubMed  CAS  Google Scholar 

  418. Panarelli NC, Park KJ, Hruban RH, Klimstra DS. Microcystic serous cystadenoma of the pancreas with subtotal cystic degeneration: another neoplastic mimic of pancreatic pseudocyst. Am J Surg Pathol. 2012;36(5):726–31.

    Article  PubMed  Google Scholar 

  419. Thirabanjasak D, Basturk O, Altinel D, Cheng JD, Adsay NV. Is serous cystadenoma of the pancreas a model of clear-cell-associated angiogenesis and tumorigenesis? Pancreatology. 2009;9(1–2):182–8.

    Article  PubMed  Google Scholar 

  420. Perez-Ordonez B, Naseem A, Lieberman PH, Klimstra DS. Solid serous adenoma of the pancreas. The solid variant of serous cystadenoma? Am J Surg Pathol. 1996;20(11):1401–5.

    Article  PubMed  CAS  Google Scholar 

  421. Kosmahl M, Wagner J, Peters K, Sipos B, Kloppel G. Serous cystic neoplasms of the pancreas: an immunohistochemical analysis revealing alpha-inhibin, neuron-specific enolase, and MUC6 as new markers. Am J Surg Pathol. 2004;28(3):339–46.

    Article  PubMed  Google Scholar 

  422. Yasuhara Y, Sakaida N, Uemura Y, Senzaki H, Shikata N, Tsubura A. Serous microcystic adenoma (glycogen-rich cystadenoma) of the pancreas: study of 11 cases showing clinicopathological and immunohistochemical correlations. Pathol Int. 2002;52(4):307–12.

    Article  PubMed  Google Scholar 

  423. Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;108(52):21188–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  424. Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  425. Moore PS, Zamboni G, Brighenti A, Lissandrini D, Antonello D, Capelli P, et al. Molecular characterization of pancreatic serous microcystic adenomas: evidence for a tumor suppressor gene on chromosome 10q. Am J Pathol. 2001;158(1):317–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  426. Thompson LD, Becker RC, Przygodzki RM, Adair CF, Heffess CS. Mucinous cystic neoplasm (mucinous cystadenocarcinoma of low-grade malignant potential) of the pancreas: a clinicopathologic study of 130 cases. Am J Surg Pathol. 1999;23(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  427. Compagno J, Oertel JE. Mucinous cystic neoplasms of the pancreas with overt and latent malignancy (cystadenocarcinoma and cystadenoma). A clinicopathologic study of 41 cases. Am J Clin Pathol. 1978;69(6):573–80.

    Article  PubMed  CAS  Google Scholar 

  428. Wilentz RE, Albores-Saavedra J, Hruban RH. Mucinous cystic neoplasms of the pancreas. Semin Diagn Pathol. 2000;17(1):31–42.

    PubMed  CAS  Google Scholar 

  429. Zamboni G, Scarpa A, Bogina G, Iacono C, Bassi C, Talamini G, et al. Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am J Surg Pathol. 1999;23(4):410–22.

    Article  PubMed  CAS  Google Scholar 

  430. Izumo A, Yamaguchi K, Eguchi T, Nishiyama K, Yamamoto H, Yonemasu H, et al. Mucinous cystic tumor of the pancreas: immunohistochemical assessment of “ovarian-type stroma”. Oncol Rep. 2003;10(3):515–25.

    PubMed  Google Scholar 

  431. Hara T, Kawashima H, Ishigooka M, Kashiyama M, Takanashi S, Yamazaki S, et al. Mucinous cystic tumors of the pancreas. Surg Today. 2002;32(11):965–9.

    Article  PubMed  Google Scholar 

  432. Ridder GJ, Maschek H, Flemming P, Nashan B, Klempnauer J. Ovarian-like stroma in an invasive mucinous cystadenocarcinoma of the pancreas positive for inhibin. A hint concerning its possible histogenesis. Virchows Arch. 1998;432(5):451–4.

    Article  PubMed  CAS  Google Scholar 

  433. Hirano H, Morita K, Tachibana S, Okimura A, Fujisawa T, Ouchi S, et al. Undifferentiated carcinoma with osteoclast-like giant cells arising in a mucinous cystic neoplasm of the pancreas. Pathol Int. 2008;58(6):383–9.

    Article  PubMed  Google Scholar 

  434. Zamboni G, Terris B, Scarpa A, Kosmahl M, Capelli P, Klimstra DS, et al. Acinar cell cystadenoma of the pancreas: a new entity? Am J Surg Pathol. 2002;26(6):698–704.

    Article  PubMed  Google Scholar 

  435. Luttges J, Feyerabend B, Buchelt T, Pacena M, Kloppel G. The mucin profile of noninvasive and invasive mucinous cystic neoplasms of the pancreas. Am J Surg Pathol. 2002;26(4):466–71.

    Article  PubMed  CAS  Google Scholar 

  436. Yoshizawa K, Nagai H, Sakurai S, Hironaka M, Morinaga S, Saitoh K, et al. Clonality and K-ras mutation analyses of epithelia in intraductal papillary mucinous tumor and mucinous cystic tumor of the pancreas. Virchows Arch. 2002;441(5):437–43.

    Article  PubMed  CAS  Google Scholar 

  437. Jimenez RE, Warshaw AL, Z’Graggen K, Hartwig W, Taylor DZ, Compton CC, et al. Sequential accumulation of K-ras mutations and p53 overexpression in the progression of pancreatic mucinous cystic neoplasms to malignancy. Ann Surg. 1999;230(4):501–9. discussion 9-11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  438. Adsay V, Mino-Kenudson M, Furukawa T, Basturk O, Zamboni G, Marchegiani G, et al. Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of verona consensus meeting. Ann Surg. 2016;263(1):162–77.

    Article  PubMed  Google Scholar 

  439. Matthaei H, Wu J, Dal Molin M, Shi C, Perner S, Kristiansen G, et al. GNAS sequencing identifies IPMN-specific mutations in a subgroup of diminutive pancreatic cysts referred to as “incipient IPMNs”. Am J Surg Pathol. 2014;38(3):360–3.

    Article  PubMed  PubMed Central  Google Scholar 

  440. Adsay NV, Conlon KC, Zee SY, Brennan MF, Klimstra DS. Intraductal papillary-mucinous neoplasms of the pancreas: an analysis of in situ and invasive carcinomas in 28 patients. Cancer. 2002;94(1):62–77.

    Article  PubMed  Google Scholar 

  441. Azar C, Van de Stadt J, Rickaert F, Deviere M, Baize M, Kloppel G, et al. Intraductal papillary mucinous tumours of the pancreas. Clinical and therapeutic issues in 32 patients. Gut. 1996;39(3):457–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  442. Kloppel G. Clinicopathologic view of intraductal papillary-mucinous tumor of the pancreas. Hepato-Gastroenterology. 1998;45(24):1981–5.

    PubMed  CAS  Google Scholar 

  443. Loftus EV Jr, Olivares-Pakzad BA, Batts KP, Adkins MC, Stephens DH, Sarr MG, et al. Intraductal papillary-mucinous tumors of the pancreas: clinicopathologic features, outcome, and nomenclature. Members of the Pancreas Clinic, and Pancreatic Surgeons of Mayo Clinic. Gastroenterology. 1996;110(6):1909–18.

    Article  PubMed  Google Scholar 

  444. Paal E, Thompson LD, Przygodzki RM, Bratthauer GL, Heffess CS. A clinicopathologic and immunohistochemical study of 22 intraductal papillary mucinous neoplasms of the pancreas, with a review of the literature. Mod Pathol. 1999;12(5):518–28.

    PubMed  CAS  Google Scholar 

  445. Furukawa T, Kloppel G, Volkan Adsay N, Albores-Saavedra J, Fukushima N, Horii A, et al. Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch. 2005;447(5):794–9.

    Article  PubMed  Google Scholar 

  446. Adsay NV, Merati K, Andea A, Sarkar F, Hruban RH, Wilentz RE, et al. The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential expression of MUC1 and MUC2 supports the existence of two separate pathways of carcinogenesis. Mod Pathol. 2002;15(10):1087–95.

    Article  PubMed  Google Scholar 

  447. Adsay NV, Longnecker DS, Klimstra DS. Pancreatic tumors with cystic dilatation of the ducts: intraductal papillary mucinous neoplasms and intraductal oncocytic papillary neoplasms. Semin Diagn Pathol. 2000;17(1):16–30.

    PubMed  CAS  Google Scholar 

  448. Nakayama Y, Inoue H, Hamada Y, Takeshita M, Iwasaki H, Maeshiro K, et al. Intraductal tubular adenoma of the pancreas, pyloric gland type: a clinicopathologic and immunohistochemical study of 6 cases. Am J Surg Pathol. 2005;29(5):607–16.

    Article  PubMed  Google Scholar 

  449. Albores-Saavedra J, Sheahan K, O’Riain C, Shukla D. Intraductal tubular adenoma, pyloric type, of the pancreas: additional observations on a new type of pancreatic neoplasm. Am J Surg Pathol. 2004;28(2):233–8.

    Article  PubMed  Google Scholar 

  450. Kato N, Akiyama S, Motoyama T. Pyloric gland-type tubular adenoma superimposed on intraductal papillary mucinous tumor of the pancreas. Pyloric gland adenoma of the pancreas. Virchows Arch. 2002;440(2):205–8.

    Article  PubMed  Google Scholar 

  451. Bakotic BW, Robinson MJ, Sturm PD, Hruban RH, Offerhaus GJ, Albores-Saavedra J. Pyloric gland adenoma of the main pancreatic duct. Am J Surg Pathol. 1999;23(2):227–31.

    Article  PubMed  CAS  Google Scholar 

  452. Adsay NV, Merati K, Basturk O, Iacobuzio-Donahue C, Levi E, Cheng JD, et al. Pathologically and biologically distinct types of epithelium in intraductal papillary mucinous neoplasms: delineation of an “intestinal” pathway of carcinogenesis in the pancreas. Am J Surg Pathol. 2004;28(7):839–48.

    Article  PubMed  Google Scholar 

  453. Ishida M, Egawa S, Aoki T, Sakata N, Mikami Y, Motoi F, et al. Characteristic clinicopathological features of the types of intraductal papillary-mucinous neoplasms of the pancreas. Pancreas. 2007;35(4):348–52.

    Article  PubMed  Google Scholar 

  454. Basturk O, Tan M, Bhanot U, Allen P, Adsay V, Scott SN, et al. The oncocytic subtype is genetically distinct from other pancreatic intraductal papillary mucinous neoplasm subtypes. Mod Pathol. 2016;29(9):1058–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  455. Schaberg KB, DiMaio MA, Longacre TA. Intraductal papillary mucinous neoplasms often contain epithelium from multiple subtypes and/or are unclassifiable. Am J Surg Pathol. 2016;40(1):44–50.

    Article  PubMed  Google Scholar 

  456. Tanaka M, Fernandez-del Castillo C, Adsay V, Chari S, Falconi M, Jang JY, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12(3):183–97.

    Article  PubMed  Google Scholar 

  457. Terada T, Ohta T, Kitamura Y, Ashida K, Matsunaga Y. Cell proliferative activity in intraductal papillary-mucinous neoplasms and invasive ductal adenocarcinomas of the pancreas: an immunohistochemical study. Arch Pathol Lab Med. 1998;122(1):42–6.

    PubMed  CAS  Google Scholar 

  458. Nagai E, Ueki T, Chijiiwa K, Tanaka M, Tsuneyoshi M. Intraductal papillary mucinous neoplasms of the pancreas associated with so-called “mucinous ductal ectasia”. Histochemical and immunohistochemical analysis of 29 cases. Am J Surg Pathol. 1995;19(5):576–89.

    Article  PubMed  CAS  Google Scholar 

  459. Basturk O, Khayyata S, Klimstra DS, Hruban RH, Zamboni G, Coban I, et al. Preferential expression of MUC6 in oncocytic and pancreatobiliary types of intraductal papillary neoplasms highlights a pyloropancreatic pathway, distinct from the intestinal pathway, in pancreatic carcinogenesis. Am J Surg Pathol. 2010;34(3):364–70.

    Article  PubMed  PubMed Central  Google Scholar 

  460. Lee JH, Kim Y, Choi JW, Kim YS. KRAS, GNAS, and RNF43 mutations in intraductal papillary mucinous neoplasm of the pancreas: a meta-analysis. Springerplus. 2016;5(1):1172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  461. Satoh K, Shimosegawa T, Moriizumi S, Koizumi M, Toyota T. K-ras mutation and p53 protein accumulation in intraductal mucin-hypersecreting neoplasms of the pancreas. Pancreas. 1996;12(4):362–8.

    Article  PubMed  CAS  Google Scholar 

  462. Z’Graggen K, Rivera JA, Compton CC, Pins M, Werner J, Fernandez-del Castillo C, et al. Prevalence of activating K-ras mutations in the evolutionary stages of neoplasia in intraductal papillary mucinous tumors of the pancreas. Ann Surg. 1997;226(4):491–8. discussion 8-500.

    Article  PubMed  PubMed Central  Google Scholar 

  463. Chadwick B, Willmore-Payne C, Tripp S, Layfield LJ, Hirschowitz S, Holden J. Histologic, immunohistochemical, and molecular classification of 52 IPMNs of the pancreas. Appl Immunohistochem Mol Morphol. 2009;17(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  464. Biankin AV, Biankin SA, Kench JG, Morey AL, Lee CS, Head DR, et al. Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut. 2002;50(6):861–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  465. Sato N, Rosty C, Jansen M, Fukushima N, Ueki T, Yeo CJ, et al. STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol. 2001;159(6):2017–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  466. Tsai JH, Liau JY, Yuan CT, Cheng ML, Yuan RH, Jeng YM. RNF43 mutation frequently occurs with GNAS mutation and mucin hypersecretion in intraductal papillary neoplasms of the bile duct. Histopathology. 2017;70(5):756–65.

    Article  PubMed  Google Scholar 

  467. Zauber P, Marotta S, Sabbath-Solitare M. GNAS mutations are associated with mucin production in low-grade appendiceal mucinous neoplasms, villous adenomas, and carcinomas. Hum Pathol. 2015;46(2):339.

    Article  PubMed  CAS  Google Scholar 

  468. Komatsu H, Tanji E, Sakata N, Aoki T, Motoi F, Naitoh T, et al. A GNAS mutation found in pancreatic intraductal papillary mucinous neoplasms induces drastic alterations of gene expression profiles with upregulation of mucin genes. PLoS One. 2014;9(2):e87875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  469. Adsay NV, Adair CF, Heffess CS, Klimstra DS. Intraductal oncocytic papillary neoplasms of the pancreas. Am J Surg Pathol. 1996;20(8):980–94.

    Article  PubMed  CAS  Google Scholar 

  470. Basturk O, Chung SM, Hruban RH, Adsay NV, Askan G, Iacobuzio-Donahue C, et al. Distinct pathways of pathogenesis of intraductal oncocytic papillary neoplasms and intraductal papillary mucinous neoplasms of the pancreas. Virchows Arch. 2016;469(5):523–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  471. Patel SA, Adams R, Goldstein M, Moskaluk CA. Genetic analysis of invasive carcinoma arising in intraductal oncocytic papillary neoplasm of the pancreas. Am J Surg Pathol. 2002;26(8):1071–7.

    Article  PubMed  Google Scholar 

  472. Konigsrainer I, Glatzle J, Kloppel G, Konigsrainer A, Wehrmann M. Intraductal and cystic tubulopapillary adenocarcinoma of the pancreas--a possible variant of intraductal tubular carcinoma. Pancreas. 2008;36(1):92–5.

    Article  PubMed  Google Scholar 

  473. Yamaguchi H, Shimizu M, Ban S, Koyama I, Hatori T, Fujita I, et al. Intraductal tubulopapillary neoplasms of the pancreas distinct from pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2009;33(8):1164–72.

    Article  PubMed  Google Scholar 

  474. Schlitter AM, Jang KT, Kloppel G, Saka B, Hong SM, Choi H, et al. Intraductal tubulopapillary neoplasms of the bile ducts: clinicopathologic, immunohistochemical, and molecular analysis of 20 cases. Mod Pathol. 2015;28(9):1249–64.

    Article  PubMed  CAS  Google Scholar 

  475. Tajiri T, Tate G, Kunimura T, Inoue K, Mitsuya T, Yoshiba M, et al. Histologic and immunohistochemical comparison of intraductal tubular carcinoma, intraductal papillary-mucinous carcinoma, and ductal adenocarcinoma of the pancreas. Pancreas. 2004;29(2):116–22.

    Article  PubMed  Google Scholar 

  476. Tajiri T, Tate G, Inagaki T, Kunimura T, Inoue K, Mitsuya T, et al. Intraductal tubular neoplasms of the pancreas: histogenesis and differentiation. Pancreas. 2005;30(2):115–21.

    Article  PubMed  Google Scholar 

  477. Yamaguchi H, Kuboki Y, Hatori T, Yamamoto M, Shiratori K, Kawamura S, et al. Somatic mutations in PIK3CA and activation of AKT in intraductal tubulopapillary neoplasms of the pancreas. Am J Surg Pathol. 2011;35(12):1812–7.

    Article  PubMed  Google Scholar 

  478. Basturk O, Berger MF, Yamaguchi H, Adsay V, Askan G, Bhanot UK, et al. Pancreatic intraductal tubulopapillary neoplasm is genetically distinct from intraductal papillary mucinous neoplasm and ductal adenocarcinoma. Mod Pathol. 2017;30(12):1760–72.

    Article  PubMed  Google Scholar 

  479. Chatelain D, Paye F, Mourra N, Scoazec JY, Baudrimont M, Parc R, et al. Unilocular acinar cell cystadenoma of the pancreas an unusual acinar cell tumor. Am J Clin Pathol. 2002;118(2):211–4.

    Article  PubMed  Google Scholar 

  480. Albores-Saavedra J. Acinar cystadenoma of the pancreas: a previously undescribed tumor. Ann Diagn Pathol. 2002;6(2):113–5.

    Article  PubMed  Google Scholar 

  481. Khor TS, Badizadegan K, Ferrone C, Fernandez-del Castillo C, Desai GS, Saenz A, et al. Acinar cystadenoma of the pancreas: a clinicopathologic study of 10 cases including multilocular lesions with mural nodules. Am J Surg Pathol. 2012;36(11):1579–91.

    Article  PubMed  Google Scholar 

  482. Singhi AD, Norwood S, Liu TC, Sharma R, Wolfgang CL, Schulick RD, et al. Acinar cell cystadenoma of the pancreas: a benign neoplasm or non-neoplastic ballooning of acinar and ductal epithelium? Am J Surg Pathol. 2013;37(9):1329–35.

    Article  PubMed  Google Scholar 

  483. Couvelard A, Terris B, Hammel P, Palazzo L, Belghiti J, Levy P, et al. Acinar cystic transformation of the pancreas (or acinar cell cystadenoma), a rare and recently described entity. Ann Pathol. 2002;22(5):397–400.

    PubMed  Google Scholar 

  484. Klimstra DS, Heffess CS, Oertel JE, Rosai J. Acinar cell carcinoma of the pancreas. A clinicopathologic study of 28 cases. Am J Surg Pathol. 1992;16(9):815–37.

    Article  PubMed  CAS  Google Scholar 

  485. Hoorens A, Lemoine NR, McLellan E, Morohoshi T, Kamisawa T, Heitz PU, et al. Pancreatic acinar cell carcinoma. An analysis of cell lineage markers, p53 expression, and Ki-ras mutation. Am J Pathol. 1993;143(3):685–98.

    PubMed  PubMed Central  CAS  Google Scholar 

  486. La Rosa S, Adsay V, Albarello L, Asioli S, Casnedi S, Franzi F, et al. Clinicopathologic study of 62 acinar cell carcinomas of the pancreas: insights into the morphology and immunophenotype and search for prognostic markers. Am J Surg Pathol. 2012;36(12):1782–95.

    Article  PubMed  Google Scholar 

  487. Shorter NA, Glick RD, Klimstra DS, Brennan MF, MP LQ. Malignant pancreatic tumors in childhood and adolescence: the Memorial Sloan-Kettering experience, 1967 to present. J Pediatr Surg. 2002;37(6):887–92.

    Article  PubMed  Google Scholar 

  488. Burns WA, Matthews MJ, Hamosh M, Weide GV, Blum R, Johnson FB. Lipase-secreting acinar cell carcinoma of the pancreas with polyarthropathy. A light and electron microscopic, histochemical, and biochemical study. Cancer. 1974;33(4):1002–9.

    Article  PubMed  CAS  Google Scholar 

  489. Holen KD, Klimstra DS, Hummer A, Gonen M, Conlon K, Brennan M, et al. Clinical characteristics and outcomes from an institutional series of acinar cell carcinoma of the pancreas and related tumors. J Clin Oncol. 2002;20(24):4673–8.

    Article  PubMed  Google Scholar 

  490. Vakiani E, Young RH, Carcangiu ML, Klimstra DS. Acinar cell carcinoma of the pancreas metastatic to the ovary: a report of 4 cases. Am J Surg Pathol. 2008;32(10):1540–5.

    Article  PubMed  Google Scholar 

  491. Sigel CS, Klimstra DS. Cytomorphologic and immunophenotypical features of acinar cell neoplasms of the pancreas. Cancer Cytopathol. 2013;121(8):459–70.

    Article  PubMed  Google Scholar 

  492. Lowery MA, Klimstra DS, Shia J, Yu KH, Allen PJ, Brennan MF, et al. Acinar cell carcinoma of the pancreas: new genetic and treatment insights into a rare malignancy. Oncologist. 2011;16(12):1714–20.

    Article  PubMed  PubMed Central  Google Scholar 

  493. Cantrell BB, Cubilla AL, Erlandson RA, Fortner J, Fitzgerald PJ. Acinar cell cystadenocarcinoma of human pancreas. Cancer. 1981;47(2):410–6.

    Article  PubMed  CAS  Google Scholar 

  494. Labate AM, Klimstra DL, Zakowski MF. Comparative cytologic features of pancreatic acinar cell carcinoma and islet cell tumor. Diagn Cytopathol. 1997;16(2):112–6.

    Article  PubMed  CAS  Google Scholar 

  495. Klimstra DS, Rosai J, Heffess CS. Mixed acinar-endocrine carcinomas of the pancreas. Am J Surg Pathol. 1994;18(8):765–78.

    Article  PubMed  CAS  Google Scholar 

  496. Ohike N, Kosmahl M, Kloppel G. Mixed acinar-endocrine carcinoma of the pancreas. A clinicopathological study and comparison with acinar-cell carcinoma. Virchows Arch. 2004;445(3):231–5.

    Article  PubMed  Google Scholar 

  497. Askan G, Deshpande V, Klimstra DS, Adsay V, Sigel C, Shia J, et al. Expression of markers of hepatocellular differentiation in pancreatic acinar cell neoplasms: a potential diagnostic pitfall. Am J Clin Pathol. 2016;146(2):163–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  498. Ting DT, Deshpande V. Expression of albumin mRNA in primary hepatic neoplasms and acinar cell carcinoma. Am J Surg Pathol. 2015;39(8):1157–8.

    Article  PubMed  Google Scholar 

  499. Wang L, Basturk O, Chmielecki J, Ross J, Stephens P, Adsay V, et al. Development of BRAF FISH assay for the detection of BRAF gene rearrangements identified in pancreatic acinar cell carcinomas. Lab Investig. 2015-02-01;95(Supplemental 1):132–40.

    Google Scholar 

  500. Liu W, Shia J, Gönen M, Lowery MA, O’Reilly EM, Klimstra DS. DNA mismatch repair abnormalities in acinar cell carcinoma of the pancreas: frequency and clinical significance. Pancreas. 2014;43(8):1264–70.

    Article  PubMed  CAS  Google Scholar 

  501. Karamurzin Y, Zeng Z, Stadler ZK, Zhang L, Ouansafi I, Al-Ahmadie HA, et al. Unusual DNA mismatch repair-deficient tumors in Lynch syndrome: a report of new cases and review of the literature. Hum Pathol. 2012;43(10):1677–87.

    Article  PubMed  CAS  Google Scholar 

  502. Terhune PG, Heffess CS, Longnecker DS. Only wild-type c-ki-ras codons 12, 13, and 61 in human pancreatic acinar cell carcinomas. Mol Carcinog. 1994;10(2):110–4.

    Article  PubMed  CAS  Google Scholar 

  503. Moore PS, Orlandini S, Zamboni G, Capelli P, Rigaud G, Falconi M, et al. Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Br J Cancer. 2001;84(2):253–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  504. Abraham SC, Wu TT, Hruban RH, Lee JH, Yeo CJ, Conlon K, et al. Genetic and immunohistochemical analysis of pancreatic acinar cell carcinoma: frequent allelic loss on chromosome 11p and alterations in the APC/beta-catenin pathway. Am J Pathol. 2002;160(3):953–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  505. Furlan D, Sahnane N, Bernasconi B, Frattini M, Tibiletti MG, Molinari F, et al. APC alterations are frequently involved in the pathogenesis of acinar cell carcinoma of the pancreas, mainly through gene loss and promoter hypermethylation. Virchows Arch. 2014;464(5):553–64.

    Article  PubMed  CAS  Google Scholar 

  506. La Rosa S, Bernasconi B, Frattini M, Tibiletti MG, Molinari F, Furlan D, et al. TP53 alterations in pancreatic acinar cell carcinoma: new insights into the molecular pathology of this rare cancer. Virchows Arch. 2016;468(3):289–96.

    Article  PubMed  CAS  Google Scholar 

  507. Klimstra DS, Wenig BM, Adair CF, Heffess CS. Pancreatoblastoma. A clinicopathologic study and review of the literature. Am J Surg Pathol. 1995;19(12):1371–89.

    Article  PubMed  CAS  Google Scholar 

  508. Palosaari D, Clayton F, Seaman J. Pancreatoblastoma in an adult. Arch Pathol Lab Med. 1986;110(7):650–2.

    PubMed  CAS  Google Scholar 

  509. Dunn JL, Longnecker DS. Pancreatoblastoma in an older adult. Arch Pathol Lab Med. 1995;119(6):547–51.

    PubMed  CAS  Google Scholar 

  510. Hoorens A, Gebhard F, Kraft K, Lemoine NR, Kloppel G. Pancreatoblastoma in an adult: its separation from acinar cell carcinoma. Virchows Arch. 1994;424(5):485–90.

    Article  PubMed  CAS  Google Scholar 

  511. Drut R, Jones MC. Congenital pancreatoblastoma in Beckwith-Wiedemann syndrome: an emerging association. Pediatr Pathol. 1988;8(3):331–9.

    Article  PubMed  CAS  Google Scholar 

  512. Muguerza R, Rodriguez A, Formigo E, Montero M, Vazquez JL, Paramo C, et al. Pancreatoblastoma associated with incomplete Beckwith-Wiedemann syndrome: case report and review of the literature. J Pediatr Surg. 2005;40(8):1341–4.

    Article  PubMed  Google Scholar 

  513. Bien E, Godzinski J, Dall'igna P, Defachelles AS, Stachowicz-Stencel T, Orbach D, et al. Pancreatoblastoma: a report from the European cooperative study group for paediatric rare tumours (EXPeRT). Eur J Cancer. 2011;47(15):2347–52.

    Article  PubMed  Google Scholar 

  514. Morohoshi T, Kanda M, Horie A, Chott A, Dreyer T, Kloppel G, et al. Immunocytochemical markers of uncommon pancreatic tumors. Acinar cell carcinoma, pancreatoblastoma, and solid cystic (papillary-cystic) tumor. Cancer. 1987;59(4):739–47.

    Article  PubMed  CAS  Google Scholar 

  515. Cingolani N, Shaco-Levy R, Farruggio A, Klimstra DS, Rosai J. Alpha-fetoprotein production by pancreatic tumors exhibiting acinar cell differentiation: study of five cases, one arising in a mediastinal teratoma. Hum Pathol. 2000;31(8):938–44.

    Article  PubMed  CAS  Google Scholar 

  516. Tanaka Y, Kato K, Notohara K, Nakatani Y, Miyake T, Ijiri R, et al. Significance of aberrant (cytoplasmic/nuclear) expression of beta-catenin in pancreatoblastoma. J Pathol. 2003;199(2):185–90.

    Article  PubMed  CAS  Google Scholar 

  517. Abraham SC, Wu TT, Klimstra DS, Finn LS, Lee JH, Yeo CJ, et al. Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas : frequent alterations in the APC/beta-catenin pathway and chromosome 11p. Am J Pathol. 2001;159(5):1619–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  518. Stelow EB, Shaco-Levy R, Bao F, Garcia J, Klimstra DS. Pancreatic acinar cell carcinomas with prominent ductal differentiation: mixed acinar ductal carcinoma and mixed acinar endocrine ductal carcinoma. Am J Surg Pathol. 2010;34(4):510–8.

    Article  PubMed  Google Scholar 

  519. Yu R, Jih L, Zhai J, Nissen NN, Colquhoun S, Wolin E, et al. Mixed acinar-endocrine carcinoma of the pancreas: new clinical and pathological features in a contemporary series. Pancreas. 2013;42(3):429–35.

    Article  PubMed  CAS  Google Scholar 

  520. Ogbonna OH, Garcon MC, Syrigos KN, Saif MW. Mixed acinar-neuroendocrine carcinoma of the pancreas with neuroendocrine predominance. Case Rep Med. 2013;2013:705092.

    Article  PubMed  PubMed Central  Google Scholar 

  521. Klimstra DS, Wenig BM, Heffess CS. Solid-pseudopapillary tumor of the pancreas: a typically cystic carcinoma of low malignant potential. Semin Diagn Pathol. 2000;17(1):66–80.

    PubMed  CAS  Google Scholar 

  522. Kissane JM. Pancreatoblastoma and solid and cystic papillary tumor: two tumors related to pancreatic ontogeny. Semin Diagn Pathol. 1994;11(2):152–64.

    PubMed  CAS  Google Scholar 

  523. Kloppel G, Morohoshi T, John HD, Oehmichen W, Opitz K, Angelkort A, et al. Solid and cystic acinar cell tumour of the pancreas. A tumour in young women with favourable prognosis. Virchows Arch A Pathol Anat Histol. 1981;392(2):171–83.

    Article  PubMed  CAS  Google Scholar 

  524. Pettinato G, Manivel JC, Ravetto C, Terracciano LM, Gould EW, di Tuoro A, et al. Papillary cystic tumor of the pancreas. A clinicopathologic study of 20 cases with cytologic, immunohistochemical, ultrastructural, and flow cytometric observations, and a review of the literature. Am J Clin Pathol. 1992;98(5):478–88.

    Article  PubMed  CAS  Google Scholar 

  525. Stommer P, Kraus J, Stolte M, Giedl J. Solid and cystic pancreatic tumors. Clinical, histochemical, and electron microscopic features in ten cases. Cancer. 1991;67(6):1635–41.

    Article  PubMed  CAS  Google Scholar 

  526. Matsunou H, Konishi F, Yamamichi N, Takayanagi N, Mukai M. Solid, infiltrating variety of papillary cystic neoplasm of the pancreas. Cancer. 1990;65(12):2747–57.

    Article  PubMed  CAS  Google Scholar 

  527. Kloppel G, Maurer R, Hofmann E, Luthold K, Oscarson J, Forsby N, et al. Solid-cystic (papillary-cystic) tumours within and outside the pancreas in men: report of two patients. Virchows Arch A Pathol Anat Histopathol. 1991;418(2):179–83.

    Article  PubMed  CAS  Google Scholar 

  528. Nishihara K, Nagoshi M, Tsuneyoshi M, Yamaguchi K, Hayashi I. Papillary cystic tumors of the pancreas. Assessment of their malignant potential. Cancer. 1993;71(1):82–92.

    Article  PubMed  CAS  Google Scholar 

  529. Abraham SC, Klimstra DS, Wilentz RE, Yeo CJ, Conlon K, Brennan M, et al. Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations. Am J Pathol. 2002;160(4):1361–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  530. Chetty R, Serra S. Loss of expression of E-cadherin in solid pseudopapillary tumors of the pancreas. Pancreas. 2009;38(3):338. author reply −9.

    Article  PubMed  Google Scholar 

  531. Hibi T, Ojima H, Sakamoto Y, Kosuge T, Shimada K, Sano T, et al. A solid pseudopapillary tumor arising from the greater omentum followed by multiple metastases with increasing malignant potential. J Gastroenterol. 2006;41(3):276–81.

    Article  PubMed  Google Scholar 

  532. Zinner MJ, Shurbaji MS, Cameron JL. Solid and papillary epithelial neoplasms of the pancreas. Surgery. 1990;108(3):475–80.

    PubMed  CAS  Google Scholar 

  533. Martin RC, Klimstra DS, Brennan MF, Conlon KC. Solid-pseudopapillary tumor of the pancreas: a surgical enigma? Ann Surg Oncol. 2002;9(1):35–40.

    Article  PubMed  Google Scholar 

  534. Orlando CA, Bowman RL, Loose JH. Multicentric papillary-cystic neoplasm of the pancreas. Arch Pathol Lab Med. 1991;115(9):958–60.

    PubMed  CAS  Google Scholar 

  535. Albores-Saavedra J, Simpson KW, Bilello SJ. The clear cell variant of solid pseudopapillary tumor of the pancreas: a previously unrecognized pancreatic neoplasm. Am J Surg Pathol. 2006;30(10):1237–42.

    Article  PubMed  Google Scholar 

  536. Tang LH, Aydin H, Brennan MF, Klimstra DS. Clinically aggressive solid pseudopapillary tumors of the pancreas: a report of two cases with components of undifferentiated carcinoma and a comparative clinicopathologic analysis of 34 conventional cases. Am J Surg Pathol. 2005;29(4):512–9.

    Article  PubMed  Google Scholar 

  537. Tanaka Y, Kato K, Notohara K, Hojo H, Ijiri R, Miyake T, et al. Frequent beta-catenin mutation and cytoplasmic/nuclear accumulation in pancreatic solid-pseudopapillary neoplasm. Cancer Res. 2001;61(23):8401–4.

    PubMed  CAS  Google Scholar 

  538. Tiemann K, Heitling U, Kosmahl M, Kloppel G. Solid pseudopapillary neoplasms of the pancreas show an interruption of the Wnt-signaling pathway and express gene products of 11q. Mod Pathol. 2007;20(9):955–60.

    Article  PubMed  CAS  Google Scholar 

  539. Serra S, Chetty R. Revision 2: an immunohistochemical approach and evaluation of solid pseudopapillary tumour of the pancreas. J Clin Pathol. 2008;61(11):1153–9.

    Article  PubMed  CAS  Google Scholar 

  540. Zamboni G, Bonetti F, Scarpa A, Pelosi G, Doglioni C, Iannucci A, et al. Expression of progesterone receptors in solid-cystic tumour of the pancreas: a clinicopathological and immunohistochemical study of ten cases. Virchows Arch A Pathol Anat Histopathol. 1993;423(6):425–31.

    Article  PubMed  CAS  Google Scholar 

  541. Kunz PL, Reidy-Lagunes D, Anthony LB, Bertino EM, Brendtro K, Chan JA, et al. Consensus guidelines for the management and treatment of neuroendocrine tumors. Pancreas. 2013;42(4):557–77.

    Article  PubMed  PubMed Central  Google Scholar 

  542. Sorbye H, Strosberg J, Baudin E, Klimstra DS, Yao JC. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer. 2014;120(18):2814–23.

    Article  PubMed  CAS  Google Scholar 

  543. Zee SY, Hochwald SN, Conlon KC, Brennan MF, Klimstra DS. Pleomorphic pancreatic endocrine neoplasms: a variant commonly confused with adenocarcinoma. Am J Surg Pathol. 2005;29(9):1194–200.

    Article  PubMed  Google Scholar 

  544. Gould VE, Wiedenmann B, Lee I, Schwechheimer K, Dockhorn-Dworniczak B, Radosevich JA, et al. Synaptophysin expression in neuroendocrine neoplasms as determined by immunocytochemistry. Am J Pathol. 1987;126(2):243–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  545. Lloyd RV, Mervak T, Schmidt K, Warner TF, Wilson BS. Immunohistochemical detection of chromogranin and neuron-specific enolase in pancreatic endocrine neoplasms. Am J Surg Pathol. 1984;8(8):607–14.

    Article  PubMed  CAS  Google Scholar 

  546. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  547. Marinoni I, Kurrer AS, Vassella E, Dettmer M, Rudolph T, Banz V, et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology. 2014;146(2):453–60. e5.

    Article  PubMed  CAS  Google Scholar 

  548. Reyes CV, Wang T. Undifferentiated small cell carcinoma of the pancreas: a report of five cases. Cancer. 1981;47(10):2500–2.

    Article  PubMed  CAS  Google Scholar 

  549. Basturk O, Tang L, Hruban RH, Adsay V, Yang Z, Krasinskas AM, et al. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am J Surg Pathol. 2014;38(4):437–47.

    Article  PubMed  PubMed Central  Google Scholar 

  550. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36(2):173–84.

    Article  PubMed  PubMed Central  Google Scholar 

  551. Gramlich Tea. In: Mills IS, editor. Histology for pathologists. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2007. p. 24.

    Google Scholar 

  552. Witkiewicz A, Galler A, Yeo CJ, Gross SD. Gangliocytic paraganglioma: case report and review of the literature. J Gastrointest Surg. 2007;11(10):1351–4.

    Article  PubMed  Google Scholar 

  553. Stringer Mea. In: Standring S, editor. Gray’s anatomy: the anatomical basis of clinical practice. 41st ed. Philadelphia: Elsevier; 2013.

    Google Scholar 

  554. Costacurta L. Anatomical and functional aspects of the human suspensory muscle of the duodenum. Acta Anat (Basel). 1972;82(1):34–46.

    Article  CAS  Google Scholar 

  555. Thompson JS, Langnas AN, Pinch LW, Kaufman S, Quigley EM, Vanderhoof JA. Surgical approach to short-bowel syndrome. Experience in a population of 160 patients. Ann Surg. 1995;222(4):600–5. discussion 5-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  556. Marsh MN, Rostami K. What is normal intestinal mucosa? Gastroenterology. 2016;151(5):784–8.

    Article  PubMed  Google Scholar 

  557. Rubin W. The epithelial “membrane” of the small intestine. Am J Clin Nutr. 1971;24(1):45–64.

    Article  PubMed  CAS  Google Scholar 

  558. Dobbins WO 3rd. Human intestinal intraepithelial lymphocytes. Gut. 1986;27(8):972–85.

    Article  PubMed  PubMed Central  Google Scholar 

  559. Ferguson A, Murray D. Quantitation of intraepithelial lymphocytes in human jejunum. Gut. 1971;12(12):988–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  560. Selby WS, Janossy G, Bofill M, Jewell DP. Lymphocyte subpopulations in the human small intestine. The findings in normal mucosa and in the mucosa of patients with adult coeliac disease. Clin Exp Immunol. 1983;52(1):219–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  561. Neugut AI, Jacobson JS, Suh S, Mukherjee R, Arber N. The epidemiology of cancer of the small bowel. Cancer Epidemiol Biomark Prev. 1998;7(3):243–51.

    CAS  Google Scholar 

  562. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  563. Haselkorn T, Whittemore AS, Lilienfeld DE. Incidence of small bowel cancer in the United States and worldwide: geographic, temporal, and racial differences. Cancer Causes Control. 2005;16(7):781–7.

    Article  PubMed  Google Scholar 

  564. Howe JR, Karnell LH, Menck HR, Scott-Conner C. The American College of Surgeons Commission on Cancer and the American Cancer Society. Adenocarcinoma of the small bowel: review of the National Cancer Data Base, 1985-1995. Cancer. 1999;86(12):2693–706.

    Article  PubMed  CAS  Google Scholar 

  565. Severson RK, Schenk M, Gurney JG, Weiss LK, Demers RY. Increasing incidence of adenocarcinomas and carcinoid tumors of the small intestine in adults. Cancer Epidemiol Biomark Prev. 1996;5(2):81–4.

    CAS  Google Scholar 

  566. Bilimoria KY, Bentrem DJ, Wayne JD, Ko CY, Bennett CL, Talamonti MS. Small bowel cancer in the United States: changes in epidemiology, treatment, and survival over the last 20 years. Ann Surg. 2009;249(1):63–71.

    Article  PubMed  Google Scholar 

  567. Bonadona V, Bonaiti B, Olschwang S, Grandjouan S, Huiart L, Longy M, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305(22):2304–10.

    Article  CAS  PubMed  Google Scholar 

  568. Wright DH. The major complications of coeliac disease. Baillieres Clin Gastroenterol. 1995;9(2):351–69.

    Article  PubMed  CAS  Google Scholar 

  569. Howdle PD, Jalal PK, Holmes GK, Houlston RS. Primary small-bowel malignancy in the UK and its association with coeliac disease. QJM. 2003;96(5):345–53.

    Article  PubMed  CAS  Google Scholar 

  570. Wheeler JM, Warren BF, Mortensen NJ, Kim HC, Biddolph SC, Elia G, et al. An insight into the genetic pathway of adenocarcinoma of the small intestine. Gut. 2002;50(2):218–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  571. Aparicio T, Svrcek M, Zaanan A, Beohou E, Laforest A, Afchain P, et al. Small bowel adenocarcinoma phenotyping, a clinicobiological prognostic study. Br J Cancer. 2013;109(12):3057–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  572. Breuhahn K, Singh S, Schirmacher P, Blaker H. Large-scale N-terminal deletions but not point mutations stabilize beta-catenin in small bowel carcinomas, suggesting divergent molecular pathways of small and large intestinal carcinogenesis. J Pathol. 2008;215(3):300–7.

    Article  PubMed  CAS  Google Scholar 

  573. Arai M, Shimizu S, Imai Y, Nakatsuru Y, Oda H, Oohara T, et al. Mutations of the Ki-ras, p53 and APC genes in adenocarcinomas of the human small intestine. Int J Cancer. 1997;70(4):390–5.

    Article  PubMed  CAS  Google Scholar 

  574. Blaker H, von Herbay A, Penzel R, Gross S, Otto HF. Genetics of adenocarcinomas of the small intestine: frequent deletions at chromosome 18q and mutations of the SMAD4 gene. Oncogene. 2002;21(1):158–64.

    Article  PubMed  CAS  Google Scholar 

  575. Laforest A, Aparicio T, Zaanan A, Silva FP, Didelot A, Desbeaux A, et al. ERBB2 gene as a potential therapeutic target in small bowel adenocarcinoma. Eur J Cancer. 2014;50(10):1740–6.

    Article  PubMed  CAS  Google Scholar 

  576. Koornstra JJ. Small bowel endoscopy in familial adenomatous polyposis and Lynch syndrome. Best Pract Res Clin Gastroenterol. 2012;26(3):359–68.

    Article  PubMed  Google Scholar 

  577. Vasen HF, Bulow S, Myrhoj T, Mathus-Vliegen L, Griffioen G, Buskens E, et al. Decision analysis in the management of duodenal adenomatosis in familial adenomatous polyposis. Gut. 1997;40(6):716–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  578. Halfdanarson TR, McWilliams RR, Donohue JH, Quevedo JF. A single-institution experience with 491 cases of small bowel adenocarcinoma. Am J Surg. 2010;199(6):797–803.

    Article  PubMed  Google Scholar 

  579. Overman MJ, Pozadzides J, Kopetz S, Wen S, Abbruzzese JL, Wolff RA, et al. Immunophenotype and molecular characterisation of adenocarcinoma of the small intestine. Br J Cancer. 2010;102(1):144–50.

    Article  PubMed  CAS  Google Scholar 

  580. Svrcek M, Jourdan F, Sebbagh N, Couvelard A, Chatelain D, Mourra N, et al. Immunohistochemical analysis of adenocarcinoma of the small intestine: a tissue microarray study. J Clin Pathol. 2003;56(12):898–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  581. Planck M, Ericson K, Piotrowska Z, Halvarsson B, Rambech E, Nilbert M. Microsatellite instability and expression of MLH1 and MSH2 in carcinomas of the small intestine. Cancer. 2003;97(6):1551–7.

    Article  PubMed  CAS  Google Scholar 

  582. Diosdado B, Buffart TE, Watkins R, Carvalho B, Ylstra B, Tijssen M, et al. High-resolution array comparative genomic hybridization in sporadic and celiac disease-related small bowel adenocarcinomas. Clin Cancer Res. 2010;16(5):1391–401.

    Article  PubMed  CAS  Google Scholar 

  583. Aparicio T, Zaanan A, Svrcek M, Laurent-Puig P, Carrere N, Manfredi S, et al. Small bowel adenocarcinoma: epidemiology, risk factors, diagnosis and treatment. Dig Liver Dis. 2014;46(2):97–104.

    Article  PubMed  Google Scholar 

  584. Palascak-Juif V, Bouvier AM, Cosnes J, Flourie B, Bouche O, Cadiot G, et al. Small bowel adenocarcinoma in patients with Crohn’s disease compared with small bowel adenocarcinoma de novo. Inflamm Bowel Dis. 2005;11(9):828–32.

    Article  PubMed  Google Scholar 

  585. Askling J, Linet M, Gridley G, Halstensen TS, Ekstrom K, Ekbom A. Cancer incidence in a population-based cohort of individuals hospitalized with celiac disease or dermatitis herpetiformis. Gastroenterology. 2002;123(5):1428–35.

    Article  PubMed  Google Scholar 

  586. Green PH, Fleischauer AT, Bhagat G, Goyal R, Jabri B, Neugut AI. Risk of malignancy in patients with celiac disease. Am J Med. 2003;115(3):191–5.

    Article  PubMed  Google Scholar 

  587. Talamonti MS, Goetz LH, Rao S, Joehl RJ. Primary cancers of the small bowel: analysis of prognostic factors and results of surgical management. Arch Surg. 2002;137(5):564–70. discussion 70-1.

    Article  PubMed  Google Scholar 

  588. Masselli G, Polettini E, Casciani E, Bertini L, Vecchioli A, Gualdi G. Small-bowel neoplasms: prospective evaluation of MR enteroclysis. Radiology. 2009;251(3):743–50.

    Article  PubMed  Google Scholar 

  589. Ross A, Mehdizadeh S, Tokar J, Leighton JA, Kamal A, Chen A, et al. Double balloon enteroscopy detects small bowel mass lesions missed by capsule endoscopy. Dig Dis Sci. 2008;53(8):2140–3.

    Article  PubMed  Google Scholar 

  590. Fischer HP, Zhou H. Pathogenesis of carcinoma of the papilla of Vater. J Hepato-Biliary-Pancreat Surg. 2004;11(5):301–9.

    Article  Google Scholar 

  591. Law JK. New developments in small bowel enteroscopy. Curr Opin Gastroenterol. 2016;32:387.

    Article  PubMed  Google Scholar 

  592. Saurin JC, Pilleul F, Soussan EB, Maniere T, D'Halluin PN, Gaudric M, et al. Small-bowel capsule endoscopy diagnoses early and advanced neoplasms in asymptomatic patients with lynch syndrome. Endoscopy. 2010;42(12):1057–62.

    Article  PubMed  Google Scholar 

  593. Standards of Practice C, Adler DG, Qureshi W, Davila R, Gan SI, Lichtenstein D, et al. The role of endoscopy in ampullary and duodenal adenomas. Gastrointest Endosc. 2006;64(6):849–54.

    Article  Google Scholar 

  594. Meneghetti AT, Safadi B, Stewart L, Way LW. Local resection of ampullary tumors. J Gastrointest Surg. 2005;9(9):1300–6.

    Article  PubMed  Google Scholar 

  595. Zadorova Z, Dvofak M, Hajer J. Endoscopic therapy of benign tumors of the papilla of Vater. Endoscopy. 2001;33(4):345–7.

    Article  PubMed  CAS  Google Scholar 

  596. Zhang MQ, Lin F, Hui P, Chen ZM, Ritter JH, Wang HL. Expression of mucins, SIMA, villin, and CDX2 in small-intestinal adenocarcinoma. Am J Clin Pathol. 2007;128(5):808–16.

    Article  PubMed  Google Scholar 

  597. Chen ZM, Ritter JH, Wang HL. Differential expression of alpha-methylacyl coenzyme A racemase in adenocarcinomas of the small and large intestines. Am J Surg Pathol. 2005;29(7):890–6.

    Article  PubMed  Google Scholar 

  598. Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005;6(5):322–7.

    Article  PubMed  CAS  Google Scholar 

  599. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 2007;67(6):2643–8.

    Article  PubMed  CAS  Google Scholar 

  600. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12.

    Article  PubMed  CAS  Google Scholar 

  601. Allegra CJ, Rumble RB, Schilsky RL. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology provisional clinical opinion update 2015 summary. J Oncol Pract. 2016;12(2):180–1.

    Article  PubMed  Google Scholar 

  602. Cancer AJCO. AJCC cancer staging manual. 8th ed. Chicago: Springer; 2016.

    Google Scholar 

  603. Bakaeen FG, Murr MM, Sarr MG, Thompson GB, Farnell MB, Nagorney DM, et al. What prognostic factors are important in duodenal adenocarcinoma? Arch Surg. 2000;135(6):635–41. discussion 41-2.

    Article  PubMed  CAS  Google Scholar 

  604. Howe JR, Klimstra DS, Moccia RD, Conlon KC, Brennan MF. Factors predictive of survival in ampullary carcinoma. Ann Surg. 1998;228(1):87–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  605. Kimura W, Futakawa N, Zhao B. Neoplastic diseases of the papilla of Vater. J Hepato-Biliary-Pancreat Surg. 2004;11(4):223–31.

    Article  Google Scholar 

  606. He J, Ahuja N, Makary MA, Cameron JL, Eckhauser FE, Choti MA, et al. 2564 resected periampullary adenocarcinomas at a single institution: trends over three decades. HPB (Oxford). 2014;16(1):83–90.

    Article  Google Scholar 

  607. Chen SC, Shyr YM, Wang SE. Longterm survival after pancreaticoduodenectomy for periampullary adenocarcinomas. HPB (Oxford). 2013;15(12):951–7.

    Article  Google Scholar 

  608. Chandrasegaram MD, Chiam SC, Chen JW, Khalid A, Mittinty ML, Neo EL, et al. Distribution and pathological features of pancreatic, ampullary, biliary and duodenal cancers resected with pancreaticoduodenectomy. World J Surg Oncol. 2015;13:85.

    Article  PubMed  PubMed Central  Google Scholar 

  609. Sperti C, Pasquali C, Piccoli A, Sernagiotto C, Pedrazzoli S. Radical resection for ampullary carcinoma: long-term results. Br J Surg. 1994;81(5):668–71.

    Article  PubMed  CAS  Google Scholar 

  610. Talamini MA, Moesinger RC, Pitt HA, Sohn TA, Hruban RH, Lillemoe KD, et al. Adenocarcinoma of the ampulla of Vater. A 28-year experience. Ann Surg. 1997;225(5):590–9. discussion 9-600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  611. Yeo CJ, Cameron JL, Sohn TA, Lillemoe KD, Pitt HA, Talamini MA, et al. Six hundred fifty consecutive pancreaticoduodenectomies in the 1990s: pathology, complications, and outcomes. Ann Surg. 1997;226(3):248–57. discussion 57-60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  612. Bouvet M, Gamagami RA, Gilpin EA, Romeo O, Sasson A, Easter DW, et al. Factors influencing survival after resection for periampullary neoplasms. Am J Surg. 2000;180(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  613. Chang MC, Chang YT, Tien YW, Sun CT, Wu MS, Lin JT. Distinct chromosomal aberrations of ampulla of Vater and pancreatic head cancers detected by laser capture microdissection and comparative genomic hybridization. Oncol Rep. 2005;14(4):867–72.

    PubMed  Google Scholar 

  614. Ohike N, Kim GE, Tajiri T, Krasinskas A, Basturk O, Coban I, et al. Intra-ampullary papillary-tubular neoplasm (IAPN): characterization of tumoral intraepithelial neoplasia occurring within the ampulla: a clinicopathologic analysis of 82 cases. Am J Surg Pathol. 2010;34(12):1731–48.

    Article  PubMed  PubMed Central  Google Scholar 

  615. Adsay V, Ohike N, Tajiri T, Kim GE, Krasinskas A, Balci S, et al. Ampullary region carcinomas: definition and site specific classification with delineation of four clinicopathologically and prognostically distinct subsets in an analysis of 249 cases. Am J Surg Pathol. 2012;36(11):1592–608.

    Article  PubMed  Google Scholar 

  616. Reid MD, Balci S, Ohike N, Xue Y, Kim GE, Tajiri T, et al. Ampullary carcinoma is often of mixed or hybrid histologic type: an analysis of reproducibility and clinical relevance of classification as pancreatobiliary versus intestinal in 232 cases. Mod Pathol. 2016;29(12):1575–85.

    Article  PubMed  Google Scholar 

  617. Cancer IAfRo. In: Bosman FT, editor. WHO classification of tumors of the digestive system. 4th ed. Lyon: IARC Press; 2010.

    Google Scholar 

  618. Chen YY, Li AF, Huang KH, Lan YT, Chen MH, Chao Y, et al. Adenosquamous carcinoma of the stomach and review of the literature. Pathol Oncol Res. 2015;21(3):547–51.

    Article  PubMed  Google Scholar 

  619. Komatsu H, Egawa S, Motoi F, Morikawa T, Sakata N, Naitoh T, et al. Clinicopathological features and surgical outcomes of adenosquamous carcinoma of the pancreas: a retrospective analysis of patients with resectable stage tumors. Surg Today. 2015;45(3):297–304.

    Article  PubMed  Google Scholar 

  620. Masoomi H, Ziogas A, Lin BS, Barleben A, Mills S, Stamos MJ, et al. Population-based evaluation of adenosquamous carcinoma of the colon and rectum. Dis Colon Rectum. 2012;55(5):509–14.

    Article  PubMed  PubMed Central  Google Scholar 

  621. Sreenarasimhaiah J, Hoang MP. Esophageal squamous cell carcinoma with metastasis to the ampulla. Gastrointest Endosc. 2005;62(2):310–1. discussion 1.

    Article  PubMed  Google Scholar 

  622. Lee TH, Park SH, Lee CK, Lee SH, Chung IK, Kim SJ, et al. Ampulla of Vater metastasis from recurrent uterine cervix carcinoma presenting as groove pancreatitis. Gastrointest Endosc. 2011;73(2):362–3.

    Article  PubMed  Google Scholar 

  623. Buyukcelik A, Ensari A, Sarioglu M, Isikdogan A, Icli F. Squamous cell carcinoma of the larynx metastasized to the ampulla of Vater. Report of a case. Tumori. 2003;89(2):199–201.

    Article  PubMed  Google Scholar 

  624. Murakami T, Yao T, Mitomi H, Morimoto T, Ueyama H, Matsumoto K, et al. Clinicopathologic and immunohistochemical characteristics of gastric adenocarcinoma with enteroblastic differentiation: a study of 29 cases. Gastric Cancer. 2016;19(2):498–507.

    Article  PubMed  CAS  Google Scholar 

  625. Gardiner GW, Lajoie G, Keith R. Hepatoid adenocarcinoma of the papilla of Vater. Histopathology. 1992;20(6):541–4.

    Article  PubMed  CAS  Google Scholar 

  626. Sato Y, Tominaga H, Tangoku A, Hamanaka Y, Yamashita Y, Suzuki T. Alpha-fetoprotein-producing cancer of the ampulla of Vater. Hepato-Gastroenterology. 1992;39(6):566–9.

    PubMed  CAS  Google Scholar 

  627. Sakamoto K, Watanabe M, De La Cruz C, Honda H, Ise H, Mitsui K, et al. Primary invasive micropapillary carcinoma of the colon. Histopathology. 2005;47(5):479–84.

    Article  PubMed  CAS  Google Scholar 

  628. De la Cruz C, Moriya T, Endoh M, Watanabe M, Takeyama J, Yang M, et al. Invasive micropapillary carcinoma of the breast: clinicopathological and immunohistochemical study. Pathol Int. 2004;54(2):90–6.

    Article  PubMed  Google Scholar 

  629. Michal M, Skalova A, Mukensnabl P. Micropapillary carcinoma of the parotid gland arising in mucinous cystadenoma. Virchows Arch. 2000;437(4):465–8.

    Article  PubMed  CAS  Google Scholar 

  630. Amin MB, Tamboli P, Merchant SH, Ordonez NG, Ro J, Ayala AG, et al. Micropapillary component in lung adenocarcinoma: a distinctive histologic feature with possible prognostic significance. Am J Surg Pathol. 2002;26(3):358–64.

    Article  PubMed  Google Scholar 

  631. Roh JH, Srivastava A, Lauwers GY, An J, Jang KT, Park CK, et al. Micropapillary carcinoma of stomach: a clinicopathologic and immunohistochemical study of 11 cases. Am J Surg Pathol. 2010;34(8):1139–46.

    Article  PubMed  Google Scholar 

  632. Khayyata S, Basturk O, Adsay NV. Invasive micropapillary carcinomas of the ampullo-pancreatobiliary region and their association with tumor-infiltrating neutrophils. Mod Pathol. 2005;18(11):1504–11.

    Article  PubMed  Google Scholar 

  633. Fujita T, Konishi M, Gotohda N, Takahashi S, Nakagohri T, Kojima M, et al. Invasive micropapillary carcinoma of the ampulla of Vater with extensive lymph node metastasis: report of a case. Surg Today. 2010;40(12):1197–200.

    Article  PubMed  Google Scholar 

  634. Nassar H, Pansare V, Zhang H, Che M, Sakr W, Ali-Fehmi R, et al. Pathogenesis of invasive micropapillary carcinoma: role of MUC1 glycoprotein. Mod Pathol. 2004;17(9):1045–50.

    Article  PubMed  CAS  Google Scholar 

  635. Lee JH, Kim JH, Choi JW, Kim YS. The presence of a micropapillary component predicts aggressive behaviour in early and advanced gastric adenocarcinomas. Pathology. 2010;42(6):560–3.

    Article  PubMed  Google Scholar 

  636. McQuitty E, Ro JY, Truong LD, Shen SS, Zhai Q, Ayala AG. Lymphovascular invasion in micropapillary urothelial carcinoma: a study of 22 cases. Arch Pathol Lab Med. 2012;136(6):635–9.

    Article  PubMed  Google Scholar 

  637. Terada T. Primary signet-ring cell carcinoma of the ampulla of Vater: a case report with an immunohistochemical study. Appl Immunohistochem Mol Morphol. 2012;20(4):427–8.

    Article  PubMed  Google Scholar 

  638. Wakasugi M, Tanemura M, Furukawa K, Murata M, Miyazaki M, Oshita M, et al. Signet ring cell carcinoma of the ampulla of vater: Report of a case and a review of the literature. Int J Surg Case Rep. 2015;12:108–11.

    Article  PubMed  PubMed Central  Google Scholar 

  639. Molberg KH, Heffess C, Delgado R, Albores-Saavedra J. Undifferentiated carcinoma with osteoclast-like giant cells of the pancreas and periampullary region. Cancer. 1998;82(7):1279–87.

    Article  PubMed  CAS  Google Scholar 

  640. Hechtman JF, Liu W, Sadowska J, Zhen L, Borsu L, Arcila ME, et al. Sequencing of 279 cancer genes in ampullary carcinoma reveals trends relating to histologic subtypes and frequent amplification and overexpression of ERBB2 (HER2). Mod Pathol. 2015;28(8):1123–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  641. Nakai T, Koh K, Kawabe T, Son E, Yoshikawa H, Yasutomi M. Importance of microperineural invasion as a prognostic factor in ampullary carcinoma. Br J Surg. 1997;84(10):1399–401.

    PubMed  CAS  Google Scholar 

  642. Willett CG, Warshaw AL, Convery K, Compton CC. Patterns of failure after pancreaticoduodenectomy for ampullary carcinoma. Surg Gynecol Obstet. 1993;176(1):33–8.

    PubMed  CAS  Google Scholar 

  643. Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39(6):707–12.

    Article  PubMed  Google Scholar 

  644. Pavel M, Baudin E, Couvelard A, Krenning E, Oberg K, Steinmuller T, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157–76.

    Article  PubMed  CAS  Google Scholar 

  645. Vinik AI, Woltering EA, Warner RR, Caplin M, O'Dorisio TM, Wiseman GA, et al. NANETS consensus guidelines for the diagnosis of neuroendocrine tumor. Pancreas. 2010;39(6):713–34.

    Article  PubMed  Google Scholar 

  646. Vinik AI, Anthony L, Boudreaux JP, Go VL, O’Dorisio TM, Ruszniewski P, et al. Neuroendocrine tumors: a critical appraisal of management strategies. Pancreas. 2010;39(6):801–18.

    Article  PubMed  Google Scholar 

  647. Brenner B, Shah MA, Gonen M, Klimstra DS, Shia J, Kelsen DP. Small-cell carcinoma of the gastrointestinal tract: a retrospective study of 64 cases. Br J Cancer. 2004;90(9):1720–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  648. Van Landingham SB, Kluppel S, Symmonds R Jr, Snyder SK. Coexisting carcinoid tumor and Crohn’s disease. J Surg Oncol. 1983;24(4):310–4.

    Article  PubMed  Google Scholar 

  649. Moyana TN, Shukoor S. Gastrointestinal endocrine cell hyperplasia in celiac disease: a selective proliferative process of serotonergic cells. Mod Pathol. 1991;4(4):419–23.

    PubMed  CAS  Google Scholar 

  650. Di Sabatino A, Giuffrida P, Vanoli A, Luinetti O, Manca R, Biancheri P, et al. Increase in neuroendocrine cells in the duodenal mucosa of patients with refractory celiac disease. Am J Gastroenterol. 2014;109(2):258–69.

    Article  PubMed  CAS  Google Scholar 

  651. Anlauf M, Garbrecht N, Henopp T, Schmitt A, Schlenger R, Raffel A, et al. Sporadic versus hereditary gastrinomas of the duodenum and pancreas: distinct clinico-pathological and epidemiological features. World J Gastroenterol. 2006;12(34):5440–6.

    Article  PubMed  PubMed Central  Google Scholar 

  652. Anlauf M, Perren A, Henopp T, Rudolf T, Garbrecht N, Schmitt A, et al. Allelic deletion of the MEN1 gene in duodenal gastrin and somatostatin cell neoplasms and their precursor lesions. Gut. 2007;56(5):637–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  653. Perren A, Anlauf M, Henopp T, Rudolph T, Schmitt A, Raffel A, et al. Multiple endocrine neoplasia type 1 (MEN1): loss of one MEN1 allele in tumors and monohormonal endocrine cell clusters but not in islet hyperplasia of the pancreas. J Clin Endocrinol Metab. 2007;92(3):1118–28.

    Article  PubMed  CAS  Google Scholar 

  654. Anlauf M, Perren A, Meyer CL, Schmid S, Saremaslani P, Kruse ML, et al. Precursor lesions in patients with multiple endocrine neoplasia type 1-associated duodenal gastrinomas. Gastroenterology. 2005;128(5):1187–98.

    Article  PubMed  CAS  Google Scholar 

  655. Kloppel G, Anlauf M, Perren A. Endocrine precursor lesions of gastroenteropancreatic neuroendocrine tumors. Endocr Pathol. 2007;18(3):150–5.

    Article  PubMed  Google Scholar 

  656. Feldman JM. Urinary serotonin in the diagnosis of carcinoid tumors. Clin Chem. 1986;32(5):840–4.

    Article  PubMed  CAS  Google Scholar 

  657. Feldman JM. Increased dopamine production in patients with carcinoid tumors. Metabolism. 1985;34(3):255–60.

    Article  PubMed  CAS  Google Scholar 

  658. Alumets J, Hakanson R, Ingemansson S, Sundler F. Substance P and 5-HT in granules isolated from an intestinal argentaffin carcinoid. Histochemistry. 1977;52(3):217–22.

    Article  PubMed  CAS  Google Scholar 

  659. Oates JA, Pettinger WA, Doctor RB. Evidence for the release of bradykinin in carcinoid syndrome. J Clin Invest. 1966;45(2):173–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  660. Theodorsson-Norheim E, Norheim I, Oberg K, Brodin E, Lundberg JM, Tatemoto K, et al. Neuropeptide K: a major tachykinin in plasma and tumor tissues from carcinoid patients. Biochem Biophys Res Commun. 1985;131(1):77–83.

    Article  PubMed  CAS  Google Scholar 

  661. Lucas KJ, Feldman JM. Flushing in the carcinoid syndrome and plasma kallikrein. Cancer. 1986;58(10):2290–3.

    Article  PubMed  CAS  Google Scholar 

  662. Klimstra DS, Modlin IR, Adsay NV, Chetty R, Deshpande V, Gonen M, et al. Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set. Am J Surg Pathol. 2010;34(3):300–13.

    Article  PubMed  Google Scholar 

  663. Debas HT, Soon-Shiong P, McKenzie AD, Bogoch A, Greig JH, Dunn WL, et al. Use of secretin in the roentgenologic and biochemical diagnosis of duodenal gastrinoma. Am J Surg. 1983;145(3):408–11.

    Article  PubMed  CAS  Google Scholar 

  664. Passaro E Jr, Howard TJ, Sawicki MP, Watt PC, Stabile BE. The origin of sporadic gastrinomas within the gastrinoma triangle: a theory. Arch Surg. 1998;133(1):13–6. discussion 7.

    Article  PubMed  Google Scholar 

  665. Deveney CW, Deveney KE, Stark D, Moss A, Stein S, Way LW. Resection of gastrinomas. Ann Surg. 1983;198(4):546–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  666. Friesen SR. The development of endocrinopathies in the prospective screening of two families with multiple endocrine adenopathy, type I. World J Surg. 1979;3(6):753–64.

    Article  PubMed  CAS  Google Scholar 

  667. Friesen SR. Update on the diagnosis and treatment of rare neuroendocrine tumors. Surg Clin North Am. 1987;67(2):379–93.

    Article  PubMed  CAS  Google Scholar 

  668. Perry RR, Feliberti E, Vinik A. Gastrinoma Zollinger-Ellison-Syndrome. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth: MDText.com; 2000.

    Google Scholar 

  669. Kulke MH, Shah MH, Benson AB 3rd, Bergsland E, Berlin JD, Blaszkowsky LS, et al. Neuroendocrine tumors, version 1.2015. J Natl Compr Cancer Netw. 2015;13(1):78–108.

    Article  CAS  Google Scholar 

  670. Zollinger RM. Gastrinoma: factors influencing prognosis. Surgery. 1985;97(1):49–54.

    PubMed  CAS  Google Scholar 

  671. Stabile BE, Passaro E Jr. Benign and malignant gastrinoma. Am J Surg. 1985;149(1):144–50.

    Article  PubMed  CAS  Google Scholar 

  672. Maton PN, Vinayek R, Frucht H, McArthur KA, Miller LS, Saeed ZA, et al. Long-term efficacy and safety of omeprazole in patients with Zollinger-Ellison syndrome: a prospective study. Gastroenterology. 1989;97(4):827–36.

    Article  PubMed  CAS  Google Scholar 

  673. Yu F, Venzon DJ, Serrano J, Goebel SU, Doppman JL, Gibril F, et al. Prospective study of the clinical course, prognostic factors, causes of death, and survival in patients with long-standing Zollinger-Ellison syndrome. J Clin Oncol. 1999;17(2):615–30.

    Article  PubMed  CAS  Google Scholar 

  674. Barreras RF, Mack E, Goodfriend T, Damm M. Resection of gastrinoma in the Zollinger-Ellison syndrome. Gastroenterology. 1982;82(5 Pt 1):953–6.

    Article  PubMed  CAS  Google Scholar 

  675. Kloppel G, Anlauf M. Epidemiology, tumour biology and histopathological classification of neuroendocrine tumours of the gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2005;19(4):507–17.

    Article  PubMed  Google Scholar 

  676. Krejs GJ, Orci L, Conlon JM, Ravazzola M, Davis GR, Raskin P, et al. Somatostatinoma syndrome. Biochemical, morphologic and clinical features. N Engl J Med. 1979;301(6):285–92.

    Article  PubMed  CAS  Google Scholar 

  677. Ganda OP, Weir GC, Soeldner JS, Legg MA, Chick WL, Patel YC, et al. “Somatostatinoma”: a somatostatin-containing tumor of the endocrine pancreas. N Engl J Med. 1977;296(17):963–7.

    Article  PubMed  CAS  Google Scholar 

  678. Garbrecht N, Anlauf M, Schmitt A, Henopp T, Sipos B, Raffel A, et al. Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: incidence, types, biological behavior, association with inherited syndromes, and functional activity. Endocr Relat Cancer. 2008;15(1):229–41.

    Article  PubMed  Google Scholar 

  679. Crain EL Jr, Thorn GW. Functioning pancreatic islet cell adenomas; a review of the literature and presentation of two new differential tests. Medicine (Baltimore). 1949;28(4):427–47.

    Article  Google Scholar 

  680. Suzuki H, Kuwano H, Masuda N, Hashimoto S, Kanoh K, Nomoto K, et al. Diagnostic usefulness of FDG-PET for malignant somatostatinoma of the pancreas. Hepato-Gastroenterology. 2008;55(85):1242–5.

    PubMed  Google Scholar 

  681. Luna IE, Monrad N, Binderup T, Boisen Thoegersen C, Hilsted L, Jensen C, et al. Somatostatin-immunoreactive pancreaticoduodenal neuroendocrine neoplasms: twenty-three cases evaluated according to the WHO 2010 classification. Neuroendocrinology. 2016;103(5):567–77.

    Article  PubMed  CAS  Google Scholar 

  682. Tanaka S, Yamasaki S, Matsushita H, Ozawa Y, Kurosaki A, Takeuchi K, et al. Duodenal somatostatinoma: a case report and review of 31 cases with special reference to the relationship between tumor size and metastasis. Pathol Int. 2000;50(2):146–52.

    Article  PubMed  CAS  Google Scholar 

  683. Vinik A, Feliberti E, Perry RR. Somatostatinoma. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth: MDText.com; 2000.

    Google Scholar 

  684. Angeletti S, Corleto VD, Schillaci O, Marignani M, Annibale B, Moretti A, et al. Use of the somatostatin analogue octreotide to localise and manage somatostatin-producing tumours. Gut. 1998;42(6):792–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  685. Gonzalez RS, Liu EH, Alvarez JR, Ayers GD, Washington MK, Shi C. Should mesenteric tumor deposits be included in staging of well-differentiated small intestine neuroendocrine tumors? Mod Pathol. 2014;27(9):1288–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  686. Norlen O, Stalberg P, Oberg K, Eriksson J, Hedberg J, Hessman O, et al. Long-term results of surgery for small intestinal neuroendocrine tumors at a tertiary referral center. World J Surg. 2012;36(6):1419–31.

    Article  PubMed  Google Scholar 

  687. Akerstrom G, Makridis C, Johansson H. Abdominal surgery in patients with midgut carcinoid tumors. Acta Oncol. 1991;30(4):547–53.

    Article  PubMed  CAS  Google Scholar 

  688. Arnold R, Muller H, Schade-Brittinger C, Rinke A, Klose K, Barth P, et al. Placebo-controlled, double-blind, prospective, randomized study of the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. J Clin Oncol. 2009;27(15_suppl):4508.

    Article  Google Scholar 

  689. Kvols LK, Oberg KE, O'Dorisio TM, Mohideen P, de Herder WW, Arnold R, et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: results from a phase II study. Endocr Relat Cancer. 2012;19(5):657–66.

    Article  PubMed  CAS  Google Scholar 

  690. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387(10022):968–77.

    Article  PubMed  CAS  Google Scholar 

  691. Okubo Y, Yokose T, Motohashi O, Miyagi Y, Yoshioka E, Suzuki M, et al. Duodenal rare neuroendocrine tumor: clinicopathological characteristics of patients with gangliocytic paraganglioma. Gastroenterol Res Pract. 2016;2016:5257312.

    Article  PubMed  PubMed Central  Google Scholar 

  692. Park HK, Han HS. Duodenal gangliocytic paraganglioma with lymph node metastasis. Arch Pathol Lab Med. 2016;140(1):94–8.

    Article  PubMed  CAS  Google Scholar 

  693. Okubo Y, Wakayama M, Nemoto T, Kitahara K, Nakayama H, Shibuya K, et al. Literature survey on epidemiology and pathology of gangliocytic paraganglioma. BMC Cancer. 2011;11:187.

    Article  PubMed  PubMed Central  Google Scholar 

  694. Mann CM, Bramhall SR, Buckels JA, Taniere P. An unusual case of duodenal obstruction-gangliocytic paraganglioma. J Hepato-Biliary-Pancreat Surg. 2009;16(4):562–5.

    Article  CAS  Google Scholar 

  695. Tomic S, Warner T. Pancreatic somatostatin-secreting gangliocytic paraganglioma with lymph node metastases. Am J Gastroenterol. 1996;91(3):607–8.

    PubMed  CAS  Google Scholar 

  696. Netter FH. Atlas of human anatomy. 4th ed. Philadelphia: Saunders/Elsevier; 2006. p. 548. 47 p.

    Google Scholar 

  697. Mills SE, editor. Histology for pathologists. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  698. Shamsuddin AM, Phelps PC, Trump BF. Human large intestinal epithelium: light microscopy, histochemistry, and ultrastructure. Hum Pathol. 1982;13(9):790–803.

    Article  PubMed  CAS  Google Scholar 

  699. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat. 1974;141(4):537–61.

    Article  PubMed  CAS  Google Scholar 

  700. Ramachandran A, Madesh M, Balasubramanian KA. Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol. 2000;15(2):109–20.

    Article  PubMed  CAS  Google Scholar 

  701. Merker SR, Weitz J, Stange DE. Gastrointestinal organoids: how they gut it out. Dev Biol. 2016;420(2):239–50.

    Article  PubMed  CAS  Google Scholar 

  702. He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet. 2004;36(10):1117–21.

    Article  PubMed  CAS  Google Scholar 

  703. Symonds DA. Paneth cell metaplasia in diseases of the colon and rectum. Arch Pathol. 1974;97(6):343–7.

    PubMed  CAS  Google Scholar 

  704. Donnellan WL. The structure of the colonic mucosa. The epithelium and subepithelial reticulohistiocytic complex. Gastroenterology. 1965;49(5):496–514.

    Article  PubMed  CAS  Google Scholar 

  705. Watanabe H, Margulis AR, Harter L. The occurrence of lymphoid nodules in the colon of adults. J Clin Gastroenterol. 1983;5(6):535–9.

    Article  PubMed  CAS  Google Scholar 

  706. Azzopardi JG, Evans DJ. Mucoprotein-containing histiocytes (muciphages) in the rectum. J Clin Pathol. 1966;19(4):368–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  707. Bethesda, MD: National Cancer Institute; 2017. pp. 1–6, updated November 2016. Available from: https://seer.cancer.gov/csr/1975_2014/.

  708. Cancer facts and figures London, England: World Cancer Research Fund International; Available from: www.wcrf.org.

  709. Cancer Incidence and Mortality Worldwide: IARC CancerBase No.11 [Internet] Lyon, France: International Agency for Research on Cancer; 2013 [Version 1.0]: Available from: http://globocan.iarc.fr/.

  710. Lee YC, Lee YL, Chuang JP, Lee JC. Differences in survival between colon and rectal cancer from SEER data. PLoS One. 2013;8(11):e78709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  711. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  712. Siegel RL, Fedewa SA, Anderson WF, Miller KD, Ma J, Rosenberg PS, et al. Colorectal cancer incidence patterns in the United States, 1974–2013. J Natl Cancer Inst. 2017;109(8)

    Google Scholar 

  713. Ballester V, Rashtak S, Boardman L. Clinical and molecular features of young-onset colorectal cancer. World J Gastroenterol. 2016;22(5):1736–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  714. Ahnen DJ, Wade SW, Jones WF, Sifri R, Mendoza Silveiras J, Greenamyer J, et al. The increasing incidence of young-onset colorectal cancer: a call to action. Mayo Clin Proc. 2014;89(2):216–24.

    Article  PubMed  Google Scholar 

  715. Astin M, Griffin T, Neal RD, Rose P, Hamilton W. The diagnostic value of symptoms for colorectal cancer in primary care: a systematic review. Br J Gen Pract. 2011;61(586):e231–43.

    Article  PubMed  PubMed Central  Google Scholar 

  716. Turati F, Bravi F, Di Maso M, Bosetti C, Polesel J, Serraino D, et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research recommendations and colorectal cancer risk. Eur J Cancer. 2017;85:86–94.

    Article  PubMed  Google Scholar 

  717. Shaukat A, Dostal A, Menk J, Church TR. BMI is a risk factor for colorectal cancer mortality. Dig Dis Sci. 2017;62(9):2511–7.

    Article  PubMed  CAS  Google Scholar 

  718. Ferrari P, Jenab M, Norat T, Moskal A, Slimani N, Olsen A, et al. Lifetime and baseline alcohol intake and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer. 2007;121(9):2065–72.

    Article  PubMed  CAS  Google Scholar 

  719. Chang LC, Wu MS, Tu CH, Lee YC, Shun CT, Chiu HM. Metabolic syndrome and smoking may justify earlier colorectal cancer screening in men. Gastrointest Endosc. 2014;79(6):961–9.

    Article  PubMed  Google Scholar 

  720. Schmid D, Behrens G, Matthews CE, Leitzmann MF. Physical activity and risk of colon cancer in diabetic and nondiabetic US adults. Mayo Clin Proc. 2016;91(12):1693–705.

    Article  PubMed  Google Scholar 

  721. Solomon BL, Whitman T, Wood ME. Contribution of extended family history in assessment of risk for breast and colon cancer. BMC Fam Pract. 2016;17(1):126.

    Article  PubMed  PubMed Central  Google Scholar 

  722. Fuchs CS, Giovannucci EL, Colditz GA, Hunter DJ, Speizer FE, Willett WC. A prospective study of family history and the risk of colorectal cancer. N Engl J Med. 1994;331(25):1669–74.

    Article  PubMed  CAS  Google Scholar 

  723. Montazeri Z, Theodoratou E, Nyiraneza C, Timofeeva M, Chen W, Svinti V, et al. Systematic meta-analyses and field synopsis of genetic association studies in colorectal adenomas. Int J Epidemiol. 2016;45(1):186–205.

    Article  PubMed  Google Scholar 

  724. Tarraga Lopez PJ, Albero JS, Rodriguez-Montes JA. Primary and secondary prevention of colorectal cancer. Clin Med Insights Gastroenterol. 2014;7:33–46.

    PubMed  PubMed Central  Google Scholar 

  725. Cole BF, Logan RF, Halabi S, Benamouzig R, Sandler RS, Grainge MJ, et al. Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. J Natl Cancer Inst. 2009;101(4):256–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  726. Bae JM, Kim JH, Kang GH. Molecular subtypes of colorectal cancer and their clinicopathologic features, with an emphasis on the serrated neoplasia pathway. Arch Pathol Lab Med. 2016;140(5):406–12.

    Article  PubMed  CAS  Google Scholar 

  727. Stachler MD, Rinehart E, Lindeman N, Odze R, Srivastava A. Novel molecular insights from routine genotyping of colorectal carcinomas. Hum Pathol. 2015;46(4):507–13.

    Article  PubMed  CAS  Google Scholar 

  728. East JE, Atkin WS, Bateman AC, Clark SK, Dolwani S, Ket SN, et al. British Society of Gastroenterology position statement on serrated polyps in the colon and rectum. Gut. 2017;66(7):1181–96.

    Article  PubMed  CAS  Google Scholar 

  729. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386(6625):623–7.

    Article  PubMed  CAS  Google Scholar 

  730. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38(7):787–93.

    Article  CAS  PubMed  Google Scholar 

  731. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96(15):8681–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  732. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article  CAS  Google Scholar 

  733. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138(6):2088–100.

    Article  PubMed  CAS  Google Scholar 

  734. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13.

    Article  PubMed  CAS  Google Scholar 

  735. Patel SS, Kilgore ML. Cost effectiveness of colorectal cancer screening strategies. Cancer Control. 2015;22(2):248–58.

    Article  PubMed  Google Scholar 

  736. Winawer SJ, Zauber AG, Fletcher RH, Stillman JS, O'Brien MJ, Levin B, et al. Guidelines for colonoscopy surveillance after polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer and the American Cancer Society. Gastroenterology. 2006;130(6):1872–85.

    Article  PubMed  Google Scholar 

  737. Mahajan D, Downs-Kelly E, Liu X, Pai RK, Patil DT, Rybicki L, et al. Reproducibility of the villous component and high-grade dysplasia in colorectal adenomas <1 cm: implications for endoscopic surveillance. Am J Surg Pathol. 2013;37(3):427–33.

    Article  PubMed  Google Scholar 

  738. Panarelli NC, Schreiner AM, Brandt SM, Shepherd NA, Yantiss RK. Histologic features and cytologic techniques that aid pathologic stage assessment of colonic adenocarcinoma. Am J Surg Pathol. 2013;37(8):1252–8.

    Article  PubMed  Google Scholar 

  739. Shepherd NA, Bussey HJ, Jass JR. Epithelial misplacement in Peutz-Jeghers polyps. A diagnostic pitfall. Am J Surg Pathol. 1987;11(10):743–9.

    Article  PubMed  CAS  Google Scholar 

  740. Backes Y, Moons LM, Novelli MR, van Bergeijk JD, Groen JN, Seerden TC, et al. Diagnosis of T1 colorectal cancer in pedunculated polyps in daily clinical practice: a multicenter study. Mod Pathol. 2017;30(1):104–12.

    Article  PubMed  CAS  Google Scholar 

  741. Benizri EI, Bereder JM, Rahili A, Bernard JL, Vanbiervliet G, Filippi J, et al. Additional colectomy after colonoscopic polypectomy for T1 colon cancer: a fine balance between oncologic benefit and operative risk. Int J Color Dis. 2012;27(11):1473–8.

    Article  Google Scholar 

  742. Nascimbeni R, Burgart LJ, Nivatvongs S, Larson DR. Risk of lymph node metastasis in T1 carcinoma of the colon and rectum. Dis Colon Rectum. 2002;45(2):200–6.

    Article  PubMed  Google Scholar 

  743. Netzer P, Forster C, Biral R, Ruchti C, Neuweiler J, Stauffer E, et al. Risk factor assessment of endoscopically removed malignant colorectal polyps. Gut. 1998;43(5):669–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  744. Seitz U, Bohnacker S, Seewald S, Thonke F, Brand B, Braiutigam T, et al. Is endoscopic polypectomy an adequate therapy for malignant colorectal adenomas? Presentation of 114 patients and review of the literature. Dis Colon Rectum. 2004;47(11):1789–96. discussion 96-7.

    Article  PubMed  CAS  Google Scholar 

  745. Pai RK, Chen Y, Jakubowski MA, Shadrach BL, Plesec TP, Pai RK. Colorectal carcinomas with submucosal invasion (pT1): analysis of histopathological and molecular factors predicting lymph node metastasis. Mod Pathol. 2017;30(1):113–22.

    Article  PubMed  CAS  Google Scholar 

  746. Rashtak S, Rego R, Sweetser SR, Sinicrope FA. Sessile serrated polyps and colon cancer prevention. Cancer Prev Res (Phila). 2017;10(5):270–8.

    Article  Google Scholar 

  747. Yang HM, Mitchell JM, Sepulveda JL, Sepulveda AR. Molecular and histologic considerations in the assessment of serrated polyps. Arch Pathol Lab Med. 2015;139(6):730–41.

    Article  PubMed  CAS  Google Scholar 

  748. Choi EY, Appelman HD. A historical perspective and expose on serrated polyps of the colorectum. Arch Pathol Lab Med. 2016;140(10):1079–84.

    Article  PubMed  Google Scholar 

  749. Rex DK, Ahnen DJ, Baron JA, Batts KP, Burke CA, Burt RW, et al. Serrated lesions of the colorectum: review and recommendations from an expert panel. Am J Gastroenterol. 2012;107(9):1315–29. quiz 4, 30.

    Article  PubMed  PubMed Central  Google Scholar 

  750. Yantiss RK, Goldman H, Odze RD. Hyperplastic polyp with epithelial misplacement (inverted hyperplastic polyp): a clinicopathologic and immunohistochemical study of 19 cases. Mod Pathol. 2001;14(9):869–75.

    Article  PubMed  CAS  Google Scholar 

  751. Kawasaki K, Kurahara K, Oshiro Y, Yanai S, Kobayashi H, Nakamura S, et al. Clinicopathologic features of inverted serrated lesions of the large bowel. Digestion. 2016;93(4):280–7.

    Article  PubMed  Google Scholar 

  752. He EY, Wyld L, Sloane MA, Canfell K, Ward RL. The molecular characteristics of colonic neoplasms in serrated polyposis: a systematic review and meta-analysis. J Pathol Clin Res. 2016;2(3):127–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  753. Network NCC. Anal Carcinoma (Version 2.2017 – April 20, 2017). Available from: https://www.nccn.org/professionals/physician_gls/pdf/anal.pdf.

  754. Schoen RE, Akpan IM. Whither the hyperplastic and serrated polyp? Gastrointest Endosc. 2016;83(3):563–5.

    Article  PubMed  Google Scholar 

  755. Glatz K, Pritt B, Glatz D, Hartmann A, O’Brien MJ, Blaszyk H. A multinational, internet-based assessment of observer variability in the diagnosis of serrated colorectal polyps. Am J Clin Pathol. 2007;127(6):938–45.

    Article  PubMed  Google Scholar 

  756. Khalid O, Radaideh S, Cummings OW, O’Brien MJ, Goldblum JR, Rex DK. Reinterpretation of histology of proximal colon polyps called hyperplastic in 2001. World J Gastroenterol. 2009;15(30):3767–70.

    Article  PubMed  PubMed Central  Google Scholar 

  757. Vayrynen SA, Vayrynen JP, Klintrup K, Makela J, Tuomisto A, Makinen MJ. Ectopic crypt foci in conventional and serrated colorectal polyps. J Clin Pathol. 2016;69(12):1063–9.

    Article  PubMed  Google Scholar 

  758. Hafezi-Bakhtiari S, Wang LM, Colling R, Serra S, Chetty R. Histological overlap between colorectal villous/tubulovillous and traditional serrated adenomas. Histopathology. 2015;66(2):308–13.

    Article  PubMed  Google Scholar 

  759. Kalimuthu SN, Serra S, Hafezi-Bakhtiari S, Colling R, Wang LM, Chetty R. Mucin-rich variant of traditional serrated adenoma: a distinct morphological variant. Histopathology. 2017;71(2):208–16.

    Article  Google Scholar 

  760. Bettington ML, Walker NI, Rosty C, Brown IS, Clouston AD, McKeone DM, et al. A clinicopathological and molecular analysis of 200 traditional serrated adenomas. Mod Pathol. 2015;28(3):414–27.

    Article  PubMed  CAS  Google Scholar 

  761. Yantiss RK, Oh KY, Chen YT, Redston M, Odze RD. Filiform serrated adenomas: a clinicopathologic and immunophenotypic study of 18 cases. Am J Surg Pathol. 2007;31(8):1238–45.

    Article  PubMed  Google Scholar 

  762. Chetty R, Vajpeyi R, Penwick JL. Psammomatous melanotic schwannoma presenting as colonic polyps. Virchows Arch. 2007;451(3):717–20.

    Article  PubMed  Google Scholar 

  763. Liu C, Walker NI, Leggett BA, Whitehall VL, Bettington ML, Rosty C. Sessile serrated adenomas with dysplasia: morphological patterns and correlations with MLH1 immunohistochemistry. Mod Pathol. 2017;30:1728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  764. Rex DK, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, Kaltenbach T, et al. Colorectal cancer screening: recommendations for physicians and patients from the U.S. multi-society task force on colorectal cancer. Gastroenterology. 2017;153(1):307–23.

    Article  PubMed  Google Scholar 

  765. Patel SG, Ahnen DJ. Familial colon cancer syndromes: an update of a rapidly evolving field. Curr Gastroenterol Rep. 2012;14(5):428–38.

    Article  PubMed  PubMed Central  Google Scholar 

  766. Hemminki K, Chen B. Familial risk for colorectal cancers are mainly due to heritable causes. Cancer Epidemiol Biomark Prev. 2004;13(7):1253–6.

    Google Scholar 

  767. Esteban-Jurado C, Garre P, Vila M, Lozano JJ, Pristoupilova A, Beltran S, et al. New genes emerging for colorectal cancer predisposition. World J Gastroenterol. 2014;20(8):1961–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  768. Da Silva FC, Wernhoff P, Dominguez-Barrera C, Dominguez-Valentin M. Update on hereditary colorectal cancer. Anticancer Res. 2016;36(9):4399–405.

    Article  Google Scholar 

  769. Lindor NM, Rabe K, Petersen GM, Haile R, Casey G, Baron J, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA. 2005;293(16):1979–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  770. Greenson JK, Huang SC, Herron C, Moreno V, Bonner JD, Tomsho LP, et al. Pathologic predictors of microsatellite instability in colorectal cancer. Am J Surg Pathol. 2009;33(1):126–33.

    Article  PubMed  PubMed Central  Google Scholar 

  771. Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol. 2016;1(3):207–16.

    Article  PubMed  Google Scholar 

  772. Egoavil C, Juarez M, Guarinos C, Rodriguez-Soler M, Hernandez-Illan E, Alenda C, et al. Increased risk of colorectal cancer in patients with multiple serrated polyps and their first-degree relatives. Gastroenterology. 2017;153(1):106–12. e2.

    Article  PubMed  Google Scholar 

  773. IJspeert JE, Rana SA, Atkinson NS, van Herwaarden YJ, Bastiaansen BA, van Leerdam ME, et al. Clinical risk factors of colorectal cancer in patients with serrated polyposis syndrome: a multicentre cohort analysis. Gut. 2017;66(2):278–84.

    Article  PubMed  CAS  Google Scholar 

  774. Boparai KS, Mathus-Vliegen EM, Koornstra JJ, Nagengast FM, van Leerdam M, van Noesel CJ, et al. Increased colorectal cancer risk during follow-up in patients with hyperplastic polyposis syndrome: a multicentre cohort study. Gut. 2010;59(8):1094–100.

    Article  PubMed  Google Scholar 

  775. Carballal S, Rodriguez-Alcalde D, Moreira L, Hernandez L, Rodriguez L, Rodriguez-Moranta F, et al. Colorectal cancer risk factors in patients with serrated polyposis syndrome: a large multicentre study. Gut. 2016;65(11):1829–37.

    Article  PubMed  Google Scholar 

  776. Colliver DW, Crawford NP, Eichenberger MR, Zacharius W, Petras RE, Stromberg AJ, et al. Molecular profiling of ulcerative colitis-associated neoplastic progression. Exp Mol Pathol. 2006;80(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  777. Tanaka T, Kobunai T, Yamamoto Y, Emoto S, Murono K, Kaneko M, et al. Colitic cancer develops through mutational alteration distinct from that in sporadic colorectal cancer: a comparative analysis of mutational rates at each step. Cancer Genomics Proteomics. 2017;14(5):341–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  778. Castano-Milla CCM, Gisbert JP. Systemic review with meta-analysis; the declining risk of colorectal cancer in ulcerative colitis. Aliment Pharmacol Ther. 2014;39(7):645–59.

    Article  PubMed  CAS  Google Scholar 

  779. Kinugasa T, Akagi Y. Status of colitis-associated cancer in ulcerative colitis. World J Gastrointest Oncol. 2016;8(4):351–7.

    Article  PubMed  PubMed Central  Google Scholar 

  780. Higashi D, Futami K, Ishibashi Y, Egawa Y, Maekawa T, Matsui T, et al. Clinical course of colorectal cancer in patients with ulcerative colitis. Anticancer Res. 2011;31(7):2499–504.

    PubMed  Google Scholar 

  781. Levi GS, Harpaz N. Intestinal low-grade tubuloglandular adenocarcinoma in inflammatory bowel disease. Am J Surg Pathol. 2006;30(8):1022–9.

    Article  PubMed  Google Scholar 

  782. Hornick JL. Manual of surgical pathology. 3rd ed. Philadelphia: Elsevier Saunders; 2010.

    Google Scholar 

  783. Kakar S, Chanjuan S, Berho M, Driman D, Fitzgibbons P, Frankel W, Hill K, Jessup J, Kransinskas A, Washington M. Protocol for the examination of specimens from patients with primary carcinoma of the colon and rectum 2016 [4.0.0.1]:Available from: http://www.cap.org/web/oracle/webcenter/portalapp/pagehierarchy/cancer_protocol_templates.jspx?_afrLoop=63660215376515 - !%40%40%3F_afrLoop%3D63660215376515%26_adf.ctrl-state%3Driqh4s1xm_4.

  784. Hav M, Libbrecht L, Ferdinande L, Geboes K, Pattyn P, Cuvelier CA. Pathologic assessment of rectal carcinoma after neoadjuvant radio(chemo)therapy: prognostic implications. Biomed Res Int. 2015;2015:574540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  785. Birbeck KF, Macklin CP, Tiffin NJ, Parsons W, Dixon MF, Mapstone NP, et al. Rates of circumferential resection margin involvement vary between surgeons and predict outcomes in rectal cancer surgery. Ann Surg. 2002;235(4):449–57.

    Article  PubMed  PubMed Central  Google Scholar 

  786. Glynne-Jones R, Mawdsley S, Novell JR. The clinical significance of the circumferential resection margin following preoperative pelvic chemo-radiotherapy in rectal cancer: why we need a common language. Color Dis. 2006;8(9):800–7.

    Article  CAS  Google Scholar 

  787. Kapiteijn E, Marijnen CA, Nagtegaal ID, Putter H, Steup WH, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 2001;345(9):638–46.

    Article  PubMed  CAS  Google Scholar 

  788. Parfitt JR, Driman DK. The total mesorectal excision specimen for rectal cancer: a review of its pathological assessment. J Clin Pathol. 2007;60(8):849–55.

    Article  PubMed  Google Scholar 

  789. Gorog D, Nagy P, Peter A, Perner F. Influence of obesity on lymph node recovery from rectal resection specimens. Pathol Oncol Res. 2003;9(3):180–3.

    Article  PubMed  Google Scholar 

  790. Wijesuriya RE, Deen KI, Hewavisenthi J, Balawardana J, Perera M. Neoadjuvant therapy for rectal cancer down-stages the tumor but reduces lymph node harvest significantly. Surg Today. 2005;35(6):442–5.

    Article  PubMed  CAS  Google Scholar 

  791. Betge J, Harbaum L, Pollheimer MJ, Lindtner RA, Kornprat P, Ebert MP, et al. Lymph node retrieval in colorectal cancer: determining factors and prognostic significance. Int J Color Dis. 2017;32(7):991–8.

    Article  Google Scholar 

  792. Arnold A, Kloor M, Jansen L, Chang-Claude J, Brenner H, von Winterfeld M, et al. The association between microsatellite instability and lymph node count in colorectal cancer. Virchows Arch. 2017;471(1):57–64.

    Article  PubMed  CAS  Google Scholar 

  793. Choi JP, Park IJ, Lee BC, Hong SM, Lee JL, Yoon YS, et al. Variability in the lymph node retrieval after resection of colon cancer: influence of operative period and process. Medicine (Baltimore). 2016;95(31):e4199.

    Article  Google Scholar 

  794. Solon JG, Cahalane A, Burke JP, Gibbons D, McCann JW, Martin ST, et al. A radiological and pathological assessment of ileocolic pedicle length as a predictor of lymph node retrieval following right hemicolectomy for caecal cancer. Tech Coloproctol. 2016;20(8):545–50.

    Article  PubMed  CAS  Google Scholar 

  795. Lavy R, Hershkovitz Y, Kapiev A, Chikman B, Shapira Z, Poluksht N, et al. A comparative study on two different pathological methods to retrieve lymph nodes following gastrectomy. Int J Surg. 2014;12(7):725–8.

    Article  PubMed  Google Scholar 

  796. Ong ML, Schofield JB. Assessment of lymph node involvement in colorectal cancer. World J Gastrointest Surg. 2016;8(3):179–92.

    Article  PubMed  PubMed Central  Google Scholar 

  797. Rossler O, Betge J, Harbaum L, Mrak K, Tschmelitsch J, Langner C. Tumor size, tumor location, and antitumor inflammatory response are associated with lymph node size in colorectal cancer patients. Mod Pathol. 2017;30(6):897–904.

    Article  PubMed  CAS  Google Scholar 

  798. Goldstein NS. Lymph node recoveries from 2427 pT3 colorectal resection specimens spanning 45 years: recommendations for a minimum number of recovered lymph nodes based on predictive probabilities. Am J Surg Pathol. 2002;26(2):179–89.

    Article  PubMed  Google Scholar 

  799. AJCC cancer staging manual. 8th ed. New York: Springer Science+Business Media; 2016. pages cm p.

    Google Scholar 

  800. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.

    Article  PubMed  CAS  Google Scholar 

  801. Cooper HS, Deppisch LM, Gourley WK, Kahn EI, Lev R, Manley PN, et al. Endoscopically removed malignant colorectal polyps: clinicopathologic correlations. Gastroenterology. 1995;108(6):1657–65.

    Article  PubMed  CAS  Google Scholar 

  802. Cooper HS. Pathologic issues in the treatment of endoscopically removed malignant colorectal polyps. J Natl Compr Cancer Netw. 2007;5(9):991–6.

    Article  Google Scholar 

  803. Cappellesso R, Luchini C, Veronese N, Lo Mele M, Rosa-Rizzotto E, Guido E, et al. Tumor budding as a risk factor for nodal metastasis in pT1 colorectal cancers: a meta-analysis. Hum Pathol. 2017;65:62–70.

    Article  PubMed  CAS  Google Scholar 

  804. Rosty C, Williamson EJ, Clendenning M, Walters RJ, Win AK, Jenkins MA, et al. Should the grading of colorectal adenocarcinoma include microsatellite instability status? Hum Pathol. 2014;45(10):2077–84.

    Article  PubMed  CAS  Google Scholar 

  805. Young J, Simms LA, Biden KG, Wynter C, Whitehall V, Karamatic R, et al. Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am J Pathol. 2001;159(6):2107–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  806. Shia J, Ellis NA, Paty PB, Nash GM, Qin J, Offit K, et al. Value of histopathology in predicting microsatellite instability in hereditary nonpolyposis colorectal cancer and sporadic colorectal cancer. Am J Surg Pathol. 2003;27(11):1407–17.

    Article  PubMed  Google Scholar 

  807. Truta B, Chen YY, Blanco AM, Deng G, Conrad PG, Kim YH, et al. Tumor histology helps to identify lynch syndrome among colorectal cancer patients. Familial Cancer. 2008;7(3):267–74.

    Article  PubMed  Google Scholar 

  808. Shia J, Schultz N, Kuk D, Vakiani E, Middha S, Segal NH, et al. Morphological characterization of colorectal cancers in the cancer genome atlas reveals distinct morphology-molecular associations: clinical and biological implications. Mod Pathol. 2017;30(4):599–609.

    Article  PubMed  CAS  Google Scholar 

  809. Hugen N, Verhoeven RH, Lemmens VE, van Aart CJ, Elferink MA, Radema SA, et al. Colorectal signet-ring cell carcinoma: benefit from adjuvant chemotherapy but a poor prognostic factor. Int J Cancer. 2015;136(2):333–9.

    Article  PubMed  CAS  Google Scholar 

  810. Park PY, Goldin T, Chang J, Markman M, Kundranda MN. Signet-ring cell carcinoma of the colon: a case report and review of the literature. Case Rep Oncol. 2015;8(3):466–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  811. Guzinska-Ustymowicz K, Niewiarowska K, Pryczynicz A. Invasive micropapillary carcinoma: a distinct type of adenocarcinomas in the gastrointestinal tract. World J Gastroenterol. 2014;20(16):4597–606.

    Article  PubMed  PubMed Central  Google Scholar 

  812. Pyo JS, Sohn JH, Kang G. Medullary carcinoma in the colorectum: a systematic review and meta-analysis. Hum Pathol. 2016;53:91–6.

    Article  PubMed  Google Scholar 

  813. Makinen MJ. Colorectal serrated adenocarcinoma. Histopathology. 2007;50(1):131–50.

    Article  PubMed  CAS  Google Scholar 

  814. Thelin C, Alquist CR, Engel LS, Dewenter T. Primary clear cell adenocarcinoma of the colon: a case report and review. J La State Med Soc. 2014;166(4):143–8.

    PubMed  Google Scholar 

  815. Wang W, Li X, Qu G, Leng T, Geng J. Primary clear cell adenocarcinoma of the colon presenting as a huge extracolic mass: a case report. Oncol Lett. 2014;8(4):1873–5.

    Article  PubMed  PubMed Central  Google Scholar 

  816. Barrera-Maldonado CD, Wiener I, Sim S. Clear cell adenocarcinoma of the colon: a case report and review of the literature. Case Rep Oncol Med. 2014;2014:905478.

    PubMed  PubMed Central  Google Scholar 

  817. Furuya Y, Wakahara T, Akimoto H, Kishimoto T, Hiroshima K, Yanagie H, et al. Clear cell adenocarcinoma with enteroblastic differentiation of the ascending colon. J Clin Oncol. 2011;29(22):e647–9.

    Article  PubMed  Google Scholar 

  818. Oh SK, Kim HW, Kang DH, Choi CW, Choi YY, Lim HK, et al. Primary adenocarcinoma with focal choriocarcinomatous differentiation in the sigmoid colon. Korean J Gastroenterol. 2015;66(5):291–6.

    Article  PubMed  Google Scholar 

  819. Lino-Silva LS, Salcedo-Hernandez RA, Herrera-Gomez A, Padilla-Rosciano A, Ramirez-Jaramillo M, Herrera-Goepfert RE, et al. Colonic cribriform carcinoma, a morphologic pattern associated with low survival. Int J Surg Pathol. 2015;23(1):13–9.

    Article  PubMed  Google Scholar 

  820. Wong HH, Chu P. Immunohistochemical features of the gastrointestinal tract tumors. J Gastrointest Oncol. 2012;3(3):262–84.

    PubMed  PubMed Central  Google Scholar 

  821. Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol. 2012;3(3):153–73.

    PubMed  PubMed Central  Google Scholar 

  822. Saad RS, Silverman JF, Khalifa MA, Rowsell C. CDX2, cytokeratins 7 and 20 immunoreactivity in rectal adenocarcinoma. Appl Immunohistochem Mol Morphol. 2009;17(3):196–201.

    Article  PubMed  CAS  Google Scholar 

  823. Hinoi T, Tani M, Lucas PC, Caca K, Dunn RL, Macri E, et al. Loss of CDX2 expression and microsatellite instability are prominent features of large cell minimally differentiated carcinomas of the colon. Am J Pathol. 2001;159(6):2239–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  824. McGregor DK, Wu TT, Rashid A, Luthra R, Hamilton SR. Reduced expression of cytokeratin 20 in colorectal carcinomas with high levels of microsatellite instability. Am J Surg Pathol. 2004;28(6):712–8.

    Article  PubMed  Google Scholar 

  825. Ueno H, Price AB, Wilkinson KH, Jass JR, Mochizuki H, Talbot IC. A new prognostic staging system for rectal cancer. Ann Surg. 2004;240(5):832–9.

    Article  PubMed  PubMed Central  Google Scholar 

  826. Lugli A, Kirsch R, Ajioka Y, Bosman F, Cathomas G, Dawson H, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017;30(9):1299–311.

    Article  PubMed  Google Scholar 

  827. Rogers AC, Winter DC, Heeney A, Gibbons D, Lugli A, Puppa G, et al. Systematic review and meta-analysis of the impact of tumour budding in colorectal cancer. Br J Cancer. 2016;115(7):831–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  828. Suzuki A, Togashi K, Nokubi M, Koinuma K, Miyakura Y, Horie H, et al. Evaluation of venous invasion by Elastica van Gieson stain and tumor budding predicts local and distant metastases in patients with T1 stage colorectal cancer. Am J Surg Pathol. 2009;33(11):1601–7.

    Article  PubMed  Google Scholar 

  829. Roxburgh CS, McMillan DC, Richards CH, Atwan M, Anderson JH, Harvey T, et al. The clinical utility of the combination of T stage and venous invasion to predict survival in patients undergoing surgery for colorectal cancer. Ann Surg. 2014;259(6):1156–65.

    Article  PubMed  Google Scholar 

  830. Betge J, Pollheimer MJ, Lindtner RA, Kornprat P, Schlemmer A, Rehak P, et al. Intramural and extramural vascular invasion in colorectal cancer: prognostic significance and quality of pathology reporting. Cancer. 2012;118(3):628–38.

    Article  PubMed  Google Scholar 

  831. Cienfuegos JA, Martinez P, Baixauli J, Beorlegui C, Rosenstone S, Sola JJ, et al. Perineural invasion is a major prognostic and predictive factor of response to adjuvant chemotherapy in stage I-II colon cancer. Ann Surg Oncol. 2017;24(4):1077–84.

    Article  PubMed  CAS  Google Scholar 

  832. Fujita S, Shimoda T, Yoshimura K, Yamamoto S, Akasu T, Moriya Y. Prospective evaluation of prognostic factors in patients with colorectal cancer undergoing curative resection. J Surg Oncol. 2003;84(3):127–31.

    Article  PubMed  Google Scholar 

  833. Dawson H, Kirsch R, Driman DK, Messenger DE, Assarzadegan N, Riddell RH. Optimizing the detection of venous invasion in colorectal cancer: the Ontario, Canada, experience and beyond. Front Oncol. 2014;4:354.

    PubMed  Google Scholar 

  834. Kirsch R, Messenger DE, Riddell RH, Pollett A, Cook M, Al-Haddad S, et al. Venous invasion in colorectal cancer: impact of an elastin stain on detection and interobserver agreement among gastrointestinal and nongastrointestinal pathologists. Am J Surg Pathol. 2013;37(2):200–10.

    Article  PubMed  Google Scholar 

  835. Jin M, Roth R, Rock JB, Washington MK, Lehman A, Frankel WL. The impact of tumor deposits on colonic adenocarcinoma AJCC TNM staging and outcome. Am J Surg Pathol. 2015;39(1):109–15.

    Article  PubMed  PubMed Central  Google Scholar 

  836. Rock JB, Washington MK, Adsay NV, Greenson JK, Montgomery EA, Robert ME, et al. Debating deposits: an interobserver variability study of lymph nodes and pericolonic tumor deposits in colonic adenocarcinoma. Arch Pathol Lab Med. 2014;138(5):636–42.

    Article  PubMed  Google Scholar 

  837. Ueno H, Mochizuki H, Hashiguchi Y, Ishiguro M, Miyoshi M, Kajiwara Y, et al. Extramural cancer deposits without nodal structure in colorectal cancer: optimal categorization for prognostic staging. Am J Clin Pathol. 2007;127(2):287–94.

    Article  PubMed  Google Scholar 

  838. Frederick LG, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG, et al. AJCC Cancer staging manual. New York: Springer; 2013.

    Google Scholar 

  839. Compton CC, Byrd DR, Garcia-Aguilar J, Kurtzman SH, Olawaiye A, Washington MK. AJCC cancer staging atlas: a companion to the seventh editions of the AJCC cancer staging manual and handbook. New York: Springer; 2012.

    Book  Google Scholar 

  840. Lord AC, D'Souza N, Pucher PH, Moran BJ, Abulafi AM, Wotherspoon A, et al. Significance of extranodal tumour deposits in colorectal cancer: a systematic review and meta-analysis. Eur J Cancer. 2017;82:92–102.

    Article  PubMed  Google Scholar 

  841. Li J, Yang S, Hu J, Liu H, Du F, Yin J, et al. Tumor deposits counted as positive lymph nodes in TNM staging for advanced colorectal cancer: a retrospective multicenter study. Oncotarget. 2016;7(14):18269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  842. Nakanishi Y, LeVea C, Dibaj S, Habib F, Cheney R, Kanehira K. Reappraisal of serosal invasion in patients with T3 colorectal cancer by elastic stain: clinicopathologic study of 139 surgical cases with special reference to peritoneal elastic lamina invasion. Arch Pathol Lab Med. 2016;140(1):81–5.

    Article  PubMed  Google Scholar 

  843. Chen JH, Borges M. Histopathology and enhanced detection of tumor invasion of peritoneal membranes. PLoS One. 2017;12(3):e0173833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  844. Shepherd NA, Baxter KJ, Love SB. The prognostic importance of peritoneal involvement in colonic cancer: a prospective evaluation. Gastroenterology. 1997;112(4):1096–102.

    Article  PubMed  CAS  Google Scholar 

  845. Min BS, Kim NK, Pyo JY, Kim H, Seong J, Keum KC, et al. Clinical impact of tumor regression grade after preoperative chemoradiation for locally advanced rectal cancer: subset analyses in lymph node negative patients. J Korean Soc Coloproctol. 2011;27(1):31–40.

    Article  PubMed  PubMed Central  Google Scholar 

  846. Biondo S, Navarro M, Marti-Rague J, Arriola E, Pares D, Del Rio C, et al. Response to neoadjuvant therapy for rectal cancer: influence on long-term results. Color Dis. 2005;7(5):472–9.

    Article  CAS  Google Scholar 

  847. Bouzourene H, Bosman FT, Seelentag W, Matter M, Coucke P. Importance of tumor regression assessment in predicting the outcome in patients with locally advanced rectal carcinoma who are treated with preoperative radiotherapy. Cancer. 2002;94(4):1121–30.

    Article  PubMed  Google Scholar 

  848. Fernandez-Acenero MJ, Estrada Munoz L, Sastre Varela J, Corona Sanchez JA, Diaz Del Arco C, Garcia Paredes B, et al. Prognostic influence of histopathological regression patterns in rectal adenocarcinoma receiving neoadjuvant therapy. J Gastrointest Oncol. 2017;8(1):49–54.

    Article  PubMed  PubMed Central  Google Scholar 

  849. Kim SH, Chang HJ, Kim DY, Park JW, Baek JY, Kim SY, et al. What is the ideal tumor regression grading system in rectal cancer patients after preoperative chemoradiotherapy? Cancer Res Treat. 2016;48(3):998–1009.

    Article  PubMed  Google Scholar 

  850. Santos MD, Silva C, Rocha A, Matos E, Nogueira C, Lopes C. Prognostic value of mandard and dworak tumor regression grading in rectal cancer: study of a single tertiary center. ISRN Surg. 2014;2014:310542.

    Article  PubMed  PubMed Central  Google Scholar 

  851. Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Color Dis. 1997;12(1):19–23.

    Article  CAS  Google Scholar 

  852. Ryan R, Gibbons D, Hyland JM, Treanor D, White A, Mulcahy HE, et al. Pathological response following long-course neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Histopathology. 2005;47(2):141–6.

    Article  PubMed  CAS  Google Scholar 

  853. Wheeler JM, Warren BF, Mortensen NJ, Ekanyaka N, Kulacoglu H, Jones AC, et al. Quantification of histologic regression of rectal cancer after irradiation: a proposal for a modified staging system. Dis Colon Rectum. 2002;45(8):1051–6.

    Article  PubMed  CAS  Google Scholar 

  854. Jang S, Hong M, Shin MK, Kim BC, Shin HS, Yu E, et al. KRAS and PIK3CA mutations in colorectal adenocarcinomas correlate with aggressive histological features and behavior. Hum Pathol. 2017;65:21–30.

    Article  PubMed  CAS  Google Scholar 

  855. Foltran L, De Maglio G, Pella N, Ermacora P, Aprile G, Masiero E, et al. Prognostic role of KRAS, NRAS, BRAF and PIK3CA mutations in advanced colorectal cancer. Future Oncol. 2015;11(4):629–40.

    Article  PubMed  CAS  Google Scholar 

  856. Kattan MW, Hess KR, Amin MB, Lu Y, Moons KG, Gershenwald JE, et al. American Joint Committee on Cancer acceptance criteria for inclusion of risk models for individualized prognosis in the practice of precision medicine. CA Cancer J Clin. 2016;66(5):370–4.

    Article  PubMed  PubMed Central  Google Scholar 

  857. Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline summary from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. J Oncol Pract. 2017;13(5):333–7.

    Article  PubMed  Google Scholar 

  858. Cejas P, Lopez-Gomez M, Aguayo C, Madero R, Moreno-Rubio J, de Castro CJ, et al. Analysis of the concordance in the EGFR pathway status between primary tumors and related metastases of colorectal cancer patients:implications for cancer therapy. Curr Cancer Drug Targets. 2012;12(2):124–31.

    Article  PubMed  CAS  Google Scholar 

  859. Vakiani E, Janakiraman M, Shen R, Sinha R, Zeng Z, Shia J, et al. Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J Clin Oncol. 2012;30(24):2956–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  860. Sylvester BE, Vakiani E. Tumor evolution and intratumor heterogeneity in colorectal carcinoma: insights from comparative genomic profiling of primary tumors and matched metastases. J Gastrointest Oncol. 2015;6(6):668–75.

    PubMed  PubMed Central  Google Scholar 

  861. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753–62.

    Article  PubMed  CAS  Google Scholar 

  862. Sorich MJ, Wiese MD, Rowland A, Kichenadasse G, McKinnon RA, Karapetis CS. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol. 2015;26(1):13–21.

    Article  PubMed  CAS  Google Scholar 

  863. Lunke S, Lee B, Kranz S, Gibbs P, Waring P, Christie M. Intratumorous heterogeneity for RAS mutations in a treatment-naive colorectal tumour. J Clin Pathol. 2017;70(8):720–3.

    Article  PubMed  CAS  Google Scholar 

  864. Forbes S, Clements J, Dawson E, Bamford S, Webb T, Dogan A, et al. Cosmic 2005. Br J Cancer. 2006;94(2):318–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  865. Juarez M, Egoavil C, Rodriguez-Soler M, Hernandez-Illan E, Guarinos C, Garcia-Martinez A, et al. KRAS and BRAF somatic mutations in colonic polyps and the risk of metachronous neoplasia. PLoS One. 2017;12(9):e0184937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  866. Neumann J, Zeindl-Eberhart E, Kirchner T, Jung A. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol Res Pract. 2009;205(12):858–62.

    Article  PubMed  CAS  Google Scholar 

  867. Scartozzi M, Giampieri R, Aprile G, Iacono D, Santini D, dell’Aquila E, et al. The distinctive molecular, pathological and clinical characteristics of BRAF-mutant colorectal tumors. Expert Rev Mol Diagn. 2015;15(8):979–87.

    Article  PubMed  CAS  Google Scholar 

  868. Estrella JS, Tetzlaff MT, Bassett RL Jr, Patel KP, Williams MD, Curry JL, et al. Assessment of BRAF V600E status in colorectal carcinoma: tissue-specific discordances between immunohistochemistry and sequencing. Mol Cancer Ther. 2015;14(12):2887–95.

    Article  PubMed  CAS  Google Scholar 

  869. Venderbosch S, Nagtegaal ID, Maughan TS, Smith CG, Cheadle JP, Fisher D, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res. 2014;20(20):5322–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  870. Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E. Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer. 2010;46(15):2788–98.

    Article  PubMed  CAS  Google Scholar 

  871. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  872. Des Guetz G, Schischmanoff O, Nicolas P, Perret GY, Morere JF, Uzzan B. Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer. 2009;45(10):1890–6.

    Article  PubMed  CAS  Google Scholar 

  873. Passardi A, Canale M, Valgiusti M, Ulivi P. Immune checkpoints as a target for colorectal cancer treatment. Int J Mol Sci. 2017;18(6):1–12.

    Google Scholar 

  874. Joost P, Veurink N, Holck S, Klarskov L, Bojesen A, Harbo M, et al. Heterogeneous mismatch-repair status in colorectal cancer. Diagn Pathol. 2014;9:126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  875. Overbeek LI, Ligtenberg MJ, Willems RW, Hermens RP, Blokx WA, Dubois SV, et al. Interpretation of immunohistochemistry for mismatch repair proteins is only reliable in a specialized setting. Am J Surg Pathol. 2008;32(8):1246–51.

    Article  PubMed  Google Scholar 

  876. Kumarasinghe AP, de Boer B, Bateman AC, Kumarasinghe MP. DNA mismatch repair enzyme immunohistochemistry in colorectal cancer: a comparison of biopsy and resection material. Pathology. 2010;42(5):414–20.

    Article  PubMed  Google Scholar 

  877. Yantiss RK. Gastrointestinal pathology: common questions and diagnostic dilemmas, an issue of surgical pathology clinics, E-Book. Philadelphia: Elsevier Health Sciences; 2017.

    Google Scholar 

  878. Parsons MT, Buchanan DD, Thompson B, Young JP, Spurdle AB. Correlation of tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for MMR variant classification. J Med Genet. 2012;49(3):151–7.

    Article  PubMed  CAS  Google Scholar 

  879. Adar T, Rodgers LH, Shannon KM, Yoshida M, Ma T, Mattia A, et al. A tailored approach to BRAF and MLH1 methylation testing in a universal screening program for Lynch syndrome. Mod Pathol. 2017;30(3):440–7.

    Article  PubMed  CAS  Google Scholar 

  880. Shimada Y, Yagi R, Kameyama H, Nagahashi M, Ichikawa H, Tajima Y, et al. Utility of comprehensive genomic sequencing for detecting HER2-positive colorectal cancer. Hum Pathol. 2017;66:1–9.

    Article  PubMed  CAS  Google Scholar 

  881. Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;17(4):1206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  882. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  883. Martin V, Landi L, Molinari F, Fountzilas G, Geva R, Riva A, et al. HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patients. Br J Cancer. 2013;108(3):668–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  884. Sartore-Bianchi A, Trusolino L, Martino C, Bencardino K, Lonardi S, Bergamo F, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(6):738–46.

    Article  PubMed  CAS  Google Scholar 

  885. Richman SD, Southward K, Chambers P, Cross D, Barrett J, Hemmings G, et al. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials. J Pathol. 2016;238(4):562–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  886. Lee WS, Park YH, Lee JN, Baek JH, Lee TH, Ha SY. Comparison of HER2 expression between primary colorectal cancer and their corresponding metastases. Cancer Med. 2014;3(3):674–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  887. Valtorta E, Martino C, Sartore-Bianchi A, Penaullt-Llorca F, Viale G, Risio M, et al. Assessment of a HER2 scoring system for colorectal cancer: results from a validation study. Mod Pathol. 2015;28(11):1481–91.

    Article  PubMed  CAS  Google Scholar 

  888. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.

    Article  PubMed  CAS  Google Scholar 

  889. Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP, et al. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology. 2008;134(4):988–97.

    Article  PubMed  CAS  Google Scholar 

  890. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  891. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  892. Nebot-Bral L, Brandao D, Verlingue L, Rouleau E, Caron O, Despras E, et al. Hypermutated tumours in the era of immunotherapy: the paradigm of personalised medicine. Eur J Cancer. 2017;84:290–303.

    Article  PubMed  CAS  Google Scholar 

  893. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  894. Katz SC, Bamboat ZM, Maker AV, Shia J, Pillarisetty VG, Yopp AC, et al. Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann Surg Oncol. 2013;20(3):946–55.

    Article  PubMed  Google Scholar 

  895. Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011;29(6):610–8.

    Article  PubMed  Google Scholar 

  896. Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obenauf AC, Tosolini M, et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016;8(327):327ra26.

    Article  PubMed  CAS  Google Scholar 

  897. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards the introduction of the 'Immunoscore' in the classification of malignant tumours. J Pathol. 2014;232(2):199–209.

    Article  PubMed  CAS  Google Scholar 

  898. Hynes SO, Coleman HG, Kelly PJ, Irwin S, O’Neill RF, Gray RT, et al. Back to the future: routine morphological assessment of the tumour microenvironment is prognostic in stage II/III colon cancer in a large population-based study. Histopathology. 2017;71(1):12–26.

    Article  PubMed  Google Scholar 

  899. Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223–62. quiz 63.

    Article  PubMed  PubMed Central  Google Scholar 

  900. Cragun D, Radford C, Dolinsky JS, Caldwell M, Chao E, Pal T. Panel-based testing for inherited colorectal cancer: a descriptive study of clinical testing performed by a US laboratory. Clin Genet. 2014;86(6):510–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  901. Kurian AW, Hare EE, Mills MA, Kingham KE, McPherson L, Whittemore AS, et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol. 2014;32(19):2001–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  902. Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller K, et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 2017;3(4):464–71.

    Article  PubMed  PubMed Central  Google Scholar 

  903. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  904. DeRycke MS, Gunawardena S, Balcom JR, Pickart AM, Waltman LA, French AJ, et al. Targeted sequencing of 36 known or putative colorectal cancer susceptibility genes. Mol Genet Genomic Med. 2017;5(5):553–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  905. Rey JM, Ducros V, Pujol P, Wang Q, Buisine MP, Aissaoui H, et al. Improving mutation screening in patients with colorectal cancer predisposition using next-generation sequencing. J Mol Diagn. 2017;19(4):589–601.

    Article  PubMed  CAS  Google Scholar 

  906. Conte B, George B, Overman M, Estrella J, Jiang ZQ, Mehrvarz Sarshekeh A, et al. High-grade neuroendocrine colorectal carcinomas: a retrospective study of 100 patients. Clin Colorectal Cancer. 2016;15(2):e1–7.

    Article  PubMed  Google Scholar 

  907. Estrella JS, Taggart MW, Rashid A, Abraham SC. Low-grade neuroendocrine tumors arising in intestinal adenomas: evidence for alterations in the adenomatous polyposis coli/beta-catenin pathway. Hum Pathol. 2014;45(10):2051–8.

    Article  PubMed  CAS  Google Scholar 

  908. Salaria SN, Abu Alfa AK, Alsaigh NY, Montgomery E, Arnold CA. Composite intestinal adenoma-microcarcinoid clues to diagnosing an under-recognised mimic of invasive adenocarcinoma. J Clin Pathol. 2013;66(4):302–6.

    Article  PubMed  CAS  Google Scholar 

  909. Winburn GB. Multiple rectal carcinoids: a case report. Am Surg. 1998;64(12):1200–3.

    PubMed  CAS  Google Scholar 

  910. Park CS, Lee SH, Kim SB, Kim KO, Jang BI. Multiple rectal neuroendocrine tumors: report of five cases. Korean J Gastroenterol. 2014;64(2):103–9.

    Article  PubMed  Google Scholar 

  911. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97(4):934–59.

    Article  PubMed  Google Scholar 

  912. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3(10):1335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  913. Lee SH, Kim BC, Chang HJ, Sohn DK, Han KS, Hong CW, et al. Rectal neuroendocrine and L-cell tumors: diagnostic dilemma and therapeutic strategy. Am J Surg Pathol. 2013;37(7):1044–52.

    Article  PubMed  Google Scholar 

  914. Federspiel BH, Burke AP, Sobin LH, Shekitka KM. Rectal and colonic carcinoids. A clinicopathologic study of 84 cases. Cancer. 1990;65(1):135–40.

    Article  PubMed  CAS  Google Scholar 

  915. Tsikitis VL, Wertheim BC, Guerrero MA. Trends of incidence and survival of gastrointestinal neuroendocrine tumors in the United States: a seer analysis. J Cancer. 2012;3:292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  916. Ramage JK, Goretzki PE, Manfredi R, Komminoth P, Ferone D, Hyrdel R, et al. Consensus guidelines for the management of patients with digestive neuroendocrine tumours: well-differentiated colon and rectum tumour/carcinoma. Neuroendocrinology. 2008;87(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  917. Ford MM. Neuroendocrine tumors of the colon and rectum. Dis Colon Rectum. 2017;60(10):1018–20.

    Article  PubMed  Google Scholar 

  918. Kasuga A, Chino A, Uragami N, Kishihara T, Igarashi M, Fujita R, et al. Treatment strategy for rectal carcinoids: a clinicopathological analysis of 229 cases at a single cancer institution. J Gastroenterol Hepatol. 2012;27(12):1801–7.

    Article  PubMed  Google Scholar 

  919. Weinstock B, Ward SC, Harpaz N, Warner RR, Itzkowitz S, Kim MK. Clinical and prognostic features of rectal neuroendocrine tumors. Neuroendocrinology. 2013;98(3):180–7.

    Article  PubMed  CAS  Google Scholar 

  920. de Mestier L, Brixi H, Gincul R, Ponchon T, Cadiot G. Updating the management of patients with rectal neuroendocrine tumors. Endoscopy. 2013;45(12):1039–46.

    Article  PubMed  Google Scholar 

  921. Jesinghaus M, Konukiewitz B, Keller G, Kloor M, Steiger K, Reiche M, et al. Colorectal mixed adenoneuroendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to colorectal adenocarcinomas. Mod Pathol. 2017;30(4):610–9.

    Article  PubMed  CAS  Google Scholar 

  922. Bernick PE, Klimstra DS, Shia J, Minsky B, Saltz L, Shi W, et al. Neuroendocrine carcinomas of the colon and rectum. Dis Colon Rectum. 2004;47(2):163–9.

    Article  PubMed  CAS  Google Scholar 

  923. Takizawa N, Ohishi Y, Hirahashi M, Takahashi S, Nakamura K, Tanaka M, et al. Molecular characteristics of colorectal neuroendocrine carcinoma; similarities with adenocarcinoma rather than neuroendocrine tumor. Hum Pathol. 2015;46(12):1890–900.

    Article  PubMed  CAS  Google Scholar 

  924. Karkouche R, Bachet JB, Sandrini J, Mitry E, Penna C, Cote JF, et al. Colorectal neuroendocrine carcinomas and adenocarcinomas share oncogenic pathways. A clinico-pathologic study of 12 cases. Eur J Gastroenterol Hepatol. 2012;24(12):1430–7.

    Article  PubMed  Google Scholar 

  925. Vanacker L, Smeets D, Hoorens A, Teugels E, Algaba R, Dehou MF, et al. Mixed adenoneuroendocrine carcinoma of the colon: molecular pathogenesis and treatment. Anticancer Res. 2014;34(10):5517–21.

    PubMed  Google Scholar 

  926. Scardoni M, Vittoria E, Volante M, Rusev B, Bersani S, Mafficini A, et al. Mixed adenoneuroendocrine carcinomas of the gastrointestinal tract: targeted next-generation sequencing suggests a monoclonal origin of the two components. Neuroendocrinology. 2014;100(4):310–6.

    Article  PubMed  CAS  Google Scholar 

  927. Sahnane N, Furlan D, Monti M, Romualdi C, Vanoli A, Vicari E, et al. Microsatellite unstable gastrointestinal neuroendocrine carcinomas: a new clinicopathologic entity. Endocr Relat Cancer. 2015;22(1):35–45.

    Article  PubMed  CAS  Google Scholar 

  928. Shen C, Yin Y, Chen H, Tang S, Yin X, Zhou Z, et al. Neuroendocrine tumors of colon and rectum: validation of clinical and prognostic values of the World Health Organization 2010 grading classifications and European Neuroendocrine Tumor Society staging systems. Oncotarget. 2017;8(13):22123–34.

    Article  PubMed  Google Scholar 

  929. Chagpar R, Chiang YJ, Xing Y, Cormier JN, Feig BW, Rashid A, et al. Neuroendocrine tumors of the colon and rectum: prognostic relevance and comparative performance of current staging systems. Ann Surg Oncol. 2013;20(4):1170–8.

    Article  PubMed  Google Scholar 

  930. Voltaggio L, Montgomery EA. Gastrointestinal tract spindle cell lesions--just like real estate, it's all about location. Mod Pathol. 2015;28(Suppl 1):S47–66.

    Article  PubMed  Google Scholar 

  931. Charalampakis V, Stamatiou D, Christodoulakis M, Kafousi M, Chryssou E, de Bree E, et al. Large presacral tailgut cyst with a carcinoid tumor in a male: report of a case. Surg Today. 2014;44(5):961–6.

    Article  PubMed  Google Scholar 

  932. Manco G, Giliberti G, Rolando G, Gelsomino F, Zunarelli E, Rossi A. Malignant transformation of a tailgut cyst. Ann Ital Chir. 2017;6

    Google Scholar 

  933. Patil P, Jibhkate SN, Pawar V, Valand A. Adenocarcinoma arising in tailgut cyst: a rare case. Indian J Pathol Microbiol. 2014;57(2):341–2.

    Article  PubMed  Google Scholar 

  934. Prasad AR, Amin MB, Randolph TL, Lee CS, Ma CK. Retrorectal cystic hamartoma: report of 5 cases with malignancy arising in 2. Arch Pathol Lab Med. 2000;124(5):725–9.

    Article  PubMed  CAS  Google Scholar 

  935. Frizelle FA, Hobday KS, Batts KP, Nelson H. Adenosquamous and squamous carcinoma of the colon and upper rectum: a clinical and histopathologic study. Dis Colon Rectum. 2001;44(3):341–6.

    Article  PubMed  CAS  Google Scholar 

  936. Kiyani A, Coyle WJ, Bao F. A rare case of primary rectal squamous cell carcinoma diagnosed by endoscopic ultrasound. J Gastrointest Oncol. 2017;8(4):E56–E9.

    Article  PubMed  PubMed Central  Google Scholar 

  937. Yeh J, Hastings J, Rao A, Abbas MA. Squamous cell carcinoma of the rectum: a single institution experience. Tech Coloproctol. 2012;16(5):349–54.

    Article  PubMed  CAS  Google Scholar 

  938. Williams GT, Blackshaw AJ, Morson BC. Squamous carcinoma of the colorectum and its genesis. J Pathol. 1979;129(3):139–47.

    Article  PubMed  CAS  Google Scholar 

  939. Audeau A, Han HW, Johnston MJ, Whitehead MW, Frizelle FA. Does human papilloma virus have a role in squamous cell carcinoma of the colon and upper rectum? Eur J Surg Oncol. 2002;28(6):657–60.

    Article  PubMed  CAS  Google Scholar 

  940. Kobayashi S, Sasaki M, Goto T, Asakage N, Sekine M, Suzuki T, et al. Endometrioid adenocarcinoma arising from endometriosis of the rectosigmoid. Dig Endosc. 2010;22(1):59–63.

    Article  PubMed  Google Scholar 

  941. Okazawa Y, Takahashi R, Mizukoshi K, Takehara K, Ishiyama S, Sugimoto K, et al. A case of clear cell adenocarcinoma arising from endometriosis of the rectum treated by laparoscopic surgery. Int J Surg Case Rep. 2014;5(12):979–83.

    Article  PubMed  PubMed Central  Google Scholar 

  942. Verma R, Osborn S, Horgan K. Endometrioid adenocarcinoma of caecum causing intussusception. Case Rep Surg. 2013;2013:714126.

    PubMed  PubMed Central  Google Scholar 

  943. Wakeley CP. The position of the vermiform appendix as ascertained by an analysis of 10,000 cases. J Anat. 1933;67(Pt 2):277–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  944. Bjerke K, Brandtzaeg P, Rognum TO. Distribution of immunoglobulin producing cells is different in normal human appendix and colon mucosa. Gut. 1986;27(6):667–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  945. Stanley MW, Cherwitz D, Hagen K, Snover DC. Neuromas of the appendix. A light-microscopic, immunohistochemical and electron-microscopic study of 20 cases. Am J Surg Pathol. 1986;10(11):801–15.

    Article  PubMed  CAS  Google Scholar 

  946. Mills SE. Histology for pathologists. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. xi. 1272 p.

    Google Scholar 

  947. Connor SJ, Hanna GB, Frizelle FA. Appendiceal tumors: retrospective clinicopathologic analysis of appendiceal tumors from 7,970 appendectomies. Dis Colon Rectum. 1998;41(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  948. Teixeira FJR Jr, Couto Netto SDD, Akaishi EH, Utiyama EM, Menegozzo CAM, Rocha MC. Acute appendicitis, inflammatory appendiceal mass and the risk of a hidden malignant tumor: a systematic review of the literature. World J Emerg Surg. 2017;12:12.

    Article  PubMed  PubMed Central  Google Scholar 

  949. McCusker ME, Cote TR, Clegg LX, Sobin LH. Primary malignant neoplasms of the appendix: a population-based study from the surveillance, epidemiology and end-results program, 1973-1998. Cancer. 2002;94(12):3307–12.

    Article  PubMed  Google Scholar 

  950. McGory ML, Maggard MA, Kang H, O'Connell JB, Ko CY. Malignancies of the appendix: beyond case series reports. Dis Colon Rectum. 2005;48(12):2264–71.

    Article  PubMed  Google Scholar 

  951. Das R, Cantor JP, Vu TQ. Two concurrent appendiceal neoplasms in an elderly patient: a case report. Int J Surg Case Rep. 2017;40:124–6.

    Article  PubMed  PubMed Central  Google Scholar 

  952. Dellaportas D, Vlahos N, Polymeneas G, Gkiokas G, Dastamani C, Carvounis E, et al. Collision tumor of the appendix: mucinous cystadenoma and carcinoid. A case report. Chirurgia (Bucur). 2014;109(6):843–5.

    CAS  Google Scholar 

  953. Ruoff C, Hanna L, Zhi W, Shahzad G, Gotlieb V, Saif MW. Cancers of the appendix: review of the literatures. ISRN Oncol. 2011;2011:728579.

    PubMed  PubMed Central  Google Scholar 

  954. Sandor A, Modlin IM. A retrospective analysis of 1570 appendiceal carcinoids. Am J Gastroenterol. 1998;93(3):422–8.

    Article  PubMed  CAS  Google Scholar 

  955. Tomioka K, Fukoe Y, Lee Y, Lee M, Wada Y, Aoki T, et al. Primary neuroendocrine carcinoma of the appendix: a case report and review of the literature. Anticancer Res. 2013;33(6):2635–8.

    PubMed  Google Scholar 

  956. O’Kane AM, O’Donnell ME, Shah R, Carey DP, Lee J. Small cell carcinoma of the appendix. World J Surg Oncol. 2008;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  957. Warkel RL, Cooper PH, Helwig EB. Adenocarcinoid, a mucin-producing carcinoid tumor of the appendix: a study of 39 cases. Cancer. 1978;42(6):2781–93.

    Article  PubMed  CAS  Google Scholar 

  958. Burke AP, Sobin LH, Federspiel BH, Shekitka KM, Helwig EB. Goblet cell carcinoids and related tumors of the vermiform appendix. Am J Clin Pathol. 1990;94(1):27–35.

    Article  PubMed  CAS  Google Scholar 

  959. Kelly KJ. Management of Appendix Cancer. Clin Colon Rectal Surg. 2015;28(4):247–55.

    Article  PubMed  PubMed Central  Google Scholar 

  960. Roggo A, Wood WC, Ottinger LW. Carcinoid tumors of the appendix. Ann Surg. 1993;217(4):385–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  961. Rorstad O. Prognostic indicators for carcinoid neuroendocrine tumors of the gastrointestinal tract. J Surg Oncol. 2005;89(3):151–60.

    Article  PubMed  Google Scholar 

  962. Amr B, Froghi F, Edmond M, Haq K, Thengungal KR. Management and outcomes of appendicular neuroendocrine tumours: retrospective review with 5-year follow-up. Eur J Surg Oncol. 2015;41(9):1243–6.

    Article  PubMed  CAS  Google Scholar 

  963. Krumpelmann K, Hansen T, Fried-Proell W, Habekost M, Flieger D, Sommer S, et al. Rectal goblet cell carcinoid. Primary tumor or metastasis? Pathologe. 2013;34(1):65–9.

    Article  PubMed  CAS  Google Scholar 

  964. Costantini M, Montalti R, Rossi G, Luisa L, Masetti M, Di Benedetto F, et al. Adenocarcinoid tumor of the extrahepatic biliary tract. Int J Surg Pathol. 2008;16(4):455–7.

    Article  PubMed  Google Scholar 

  965. Tang LH, Shia J, Soslow RA, Dhall D, Wong WD, O'Reilly E, et al. Pathologic classification and clinical behavior of the spectrum of goblet cell carcinoid tumors of the appendix. Am J Surg Pathol. 2008;32(10):1429–43.

    Article  PubMed  Google Scholar 

  966. Taggart MW, Abraham SC, Overman MJ, Mansfield PF, Rashid A. Goblet cell carcinoid tumor, mixed goblet cell carcinoid-adenocarcinoma, and adenocarcinoma of the appendix: comparison of clinicopathologic features and prognosis. Arch Pathol Lab Med. 2015;139(6):782–90.

    Article  PubMed  Google Scholar 

  967. Lee LH, McConnell YJ, Tsang E, Zerhouni S, Speers C, Kennecke H, et al. Simplified 2-tier histologic grading system accurately predicts outcomes in goblet cell carcinoid of the appendix. Hum Pathol. 2015;46(12):1881–9.

    Article  PubMed  Google Scholar 

  968. Wen KW, Hale G, Shafizadeh N, Hosseini M, Huang A, Kakar S. Appendiceal goblet cell carcinoid: common errors in staging and clinical interpretation with a proposal for an improved terminology. Hum Pathol. 2017;65:187–93.

    Article  PubMed  Google Scholar 

  969. Shenoy S. Goblet cell carcinoids of the appendix: tumor biology, mutations and management strategies. World J Gastrointest Surg. 2016;8(10):660–9.

    Article  PubMed  PubMed Central  Google Scholar 

  970. Olsen IH, Holt N, Langer SW, Hasselby JP, Gronbaek H, Hillingso J, et al. Goblet cell carcinoids: characteristics of a Danish cohort of 83 patients. PLoS One. 2015;10(2):e0117627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  971. Taggart MW, Galbincea J, Mansfield PF, Fournier KF, Royal RE, Overman MJ, et al. High-level microsatellite instability in appendiceal carcinomas. Am J Surg Pathol. 2013;37(8):1192–200.

    Article  PubMed  PubMed Central  Google Scholar 

  972. Carr NJ, McCarthy WF, Sobin LH. Epithelial noncarcinoid tumors and tumor-like lesions of the appendix. A clinicopathologic study of 184 patients with a multivariate analysis of prognostic factors. Cancer. 1995;75(3):757–68.

    Article  CAS  PubMed  Google Scholar 

  973. Pai RK, Beck AH, Norton JA, Longacre TA. Appendiceal mucinous neoplasms: clinicopathologic study of 116 cases with analysis of factors predicting recurrence. Am J Surg Pathol. 2009;33(10):1425–39.

    Article  PubMed  Google Scholar 

  974. Misdraji J, Yantiss RK, Graeme-Cook FM, Balis UJ, Young RH. Appendiceal mucinous neoplasms: a clinicopathologic analysis of 107 cases. Am J Surg Pathol. 2003;27(8):1089–103.

    Article  PubMed  Google Scholar 

  975. Carr NJ, Cecil TD, Mohamed F, Sobin LH, Sugarbaker PH, Gonzalez-Moreno S, et al. A consensus for classification and pathologic reporting of pseudomyxoma peritonei and associated appendiceal neoplasia: the results of the Peritoneal Surface Oncology Group International (PSOGI) modified Delphi process. Am J Surg Pathol. 2016;40(1):14–26.

    Article  PubMed  Google Scholar 

  976. Carr NJ, Bibeau F, Bradley RF, Dartigues P, Feakins RM, Geisinger KR, et al. The histopathological classification, diagnosis and differential diagnosis of mucinous appendiceal neoplasms, appendiceal adenocarcinomas and pseudomyxoma peritonei. Histopathology. 2017;71(6):847–58.

    Article  PubMed  Google Scholar 

  977. Lamps LW, Gray GF Jr, Dilday BR, Washington MK. The coexistence of low-grade mucinous neoplasms of the appendix and appendiceal diverticula: a possible role in the pathogenesis of pseudomyxoma peritonei. Mod Pathol. 2000;13(5):495–501.

    Article  PubMed  CAS  Google Scholar 

  978. Yantiss RK, Shia J, Klimstra DS, Hahn HP, Odze RD, Misdraji J. Prognostic significance of localized extra-appendiceal mucin deposition in appendiceal mucinous neoplasms. Am J Surg Pathol. 2009;33(2):248–55.

    Article  PubMed  Google Scholar 

  979. Ronnett BM, Zahn CM, Kurman RJ, Kass ME, Sugarbaker PH, Shmookler BM. Disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. A clinicopathologic analysis of 109 cases with emphasis on distinguishing pathologic features, site of origin, prognosis, and relationship to “pseudomyxoma peritonei”. Am J Surg Pathol. 1995;19(12):1390–408.

    Article  PubMed  CAS  Google Scholar 

  980. Turaga K, Levine E, Barone R, Sticca R, Petrelli N, Lambert L, et al. Consensus guidelines from The American Society of Peritoneal Surface Malignancies on standardizing the delivery of hyperthermic intraperitoneal chemotherapy (HIPEC) in colorectal cancer patients in the United States. Ann Surg Oncol. 2014;21(5):1501–5.

    Article  PubMed  CAS  Google Scholar 

  981. Rabban JT, Vohra P, Zaloudek CJ. Nongynecologic metastases to fallopian tube mucosa: a potential mimic of tubal high-grade serous carcinoma and benign tubal mucinous metaplasia or nonmucinous hyperplasia. Am J Surg Pathol. 2015;39(1):35–51.

    Article  PubMed  Google Scholar 

  982. Bradley RF, Stewart JH, Russell GB, Levine EA, Geisinger KR. Pseudomyxoma peritonei of appendiceal origin: a clinicopathologic analysis of 101 patients uniformly treated at a single institution, with literature review. Am J Surg Pathol. 2006;30(5):551–9.

    Article  PubMed  Google Scholar 

  983. Davison JM, Choudry HA, Pingpank JF, Ahrendt SA, Holtzman MP, Zureikat AH, et al. Clinicopathologic and molecular analysis of disseminated appendiceal mucinous neoplasms: identification of factors predicting survival and proposed criteria for a three-tiered assessment of tumor grade. Mod Pathol. 2014;27(11):1521–39.

    Article  PubMed  Google Scholar 

  984. Grotz TE, Royal RE, Mansfield PF, Overman MJ, Mann GN, Robinson KA, et al. Stratification of outcomes for mucinous appendiceal adenocarcinoma with peritoneal metastasis by histological grade. World J Gastrointest Oncol. 2017;9(9):354–62.

    Article  PubMed  PubMed Central  Google Scholar 

  985. Shetty S, Natarajan B, Thomas P, Govindarajan V, Sharma P, Loggie B. Proposed classification of pseudomyxoma peritonei: influence of signet ring cells on survival. Am Surg. 2013;79(11):1171–6.

    Article  PubMed  Google Scholar 

  986. Overman MJ, Fournier K, Hu CY, Eng C, Taggart M, Royal R, et al. Improving the AJCC/TNM staging for adenocarcinomas of the appendix: the prognostic impact of histological grade. Ann Surg. 2013;257(6):1072–8.

    Article  PubMed  Google Scholar 

  987. Sirintrapun SJ, Blackham AU, Russell G, Votanopoulos K, Stewart JH, Shen P, et al. Significance of signet ring cells in high-grade mucinous adenocarcinoma of the peritoneum from appendiceal origin. Hum Pathol. 2014;45(8):1597–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  988. Misdraji J, Lauwers GY, Irving JA, Batts KP, Young RH. Appendiceal or cecal endometriosis with intestinal metaplasia: a potential mimic of appendiceal mucinous neoplasms. Am J Surg Pathol. 2014;38(5):698–705.

    Article  PubMed  Google Scholar 

  989. Smeenk RM, van Velthuysen ML, Verwaal VJ, Zoetmulder FA. Appendiceal neoplasms and pseudomyxoma peritonei: a population based study. Eur J Surg Oncol. 2008;34(2):196–201.

    Article  PubMed  CAS  Google Scholar 

  990. Arnason T, Kamionek M, Yang M, Yantiss RK, Misdraji J. Significance of proximal margin involvement in low-grade appendiceal mucinous neoplasms. Arch Pathol Lab Med. 2015;139(4):518–21.

    Article  CAS  PubMed  Google Scholar 

  991. Szych C, Staebler A, Connolly DC, Wu R, Cho KR, Ronnett BM. Molecular genetic evidence supporting the clonality and appendiceal origin of Pseudomyxoma peritonei in women. Am J Pathol. 1999;154(6):1849–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  992. Kabbani W, Houlihan PS, Luthra R, Hamilton SR, Rashid A. Mucinous and nonmucinous appendiceal adenocarcinomas: different clinicopathological features but similar genetic alterations. Mod Pathol. 2002;15(6):599–605.

    Article  PubMed  Google Scholar 

  993. Zauber P, Berman E, Marotta S, Sabbath-Solitare M, Bishop T. Ki-ras gene mutations are invariably present in low-grade mucinous tumors of the vermiform appendix. Scand J Gastroenterol. 2011;46(7–8):869–74.

    Article  PubMed  CAS  Google Scholar 

  994. Raghav KP, Shetty AV, Kazmi SM, Zhang N, Morris J, Taggart M, et al. Impact of molecular alterations and targeted therapy in appendiceal adenocarcinomas. Oncologist. 2013;18(12):1270–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  995. Singhi AD, Davison JM, Choudry HA, Pingpank JF, Ahrendt SA, Holtzman MP, et al. GNAS is frequently mutated in both low-grade and high-grade disseminated appendiceal mucinous neoplasms but does not affect survival. Hum Pathol. 2014;45(8):1737–43.

    Article  PubMed  CAS  Google Scholar 

  996. Alakus H, Babicky ML, Ghosh P, Yost S, Jepsen K, Dai Y, et al. Correction: genome-wide mutational landscape of mucinous carcinomatosis peritonei of appendiceal origin. Genome Med. 2014;6(7):53.

    Article  PubMed  PubMed Central  Google Scholar 

  997. Asare EA, Compton CC, Hanna NN, Kosinski LA, Washington MK, Kakar S, et al. The impact of stage, grade, and mucinous histology on the efficacy of systemic chemotherapy in adenocarcinomas of the appendix: analysis of the National Cancer Data Base. Cancer. 2016;122(2):213–21.

    Article  PubMed  Google Scholar 

  998. Chua TC, Chong CH, Liauw W, Morris DL. Approach to rectal cancer surgery. Int J Surg Oncol. 2012;2012:247107.

    PubMed  PubMed Central  Google Scholar 

  999. Benedix F, Reimer A, Gastinger I, Mroczkowski P, Lippert H, Kube R, et al. Primary appendiceal carcinoma--epidemiology, surgery and survival: results of a German multi-center study. Eur J Surg Oncol. 2010;36(8):763–71.

    Article  PubMed  CAS  Google Scholar 

  1000. Perez Montiel D, Arispe Angulo K, Cantu-de Leon D, Bornstein Quevedo L, Chanona Vilchis J, Herrera Montalvo L. The value of SATB2 in the differential diagnosis of intestinal-type mucinous tumors of the ovary: primary vs metastatic. Ann Diagn Pathol. 2015;19(4):249–52.

    Article  PubMed  Google Scholar 

  1001. Miettinen M, Furlong M, Sarlomo-Rikala M, Burke A, Sobin LH, Lasota J. Gastrointestinal stromal tumors, intramural leiomyomas, and leiomyosarcomas in the rectum and anus: a clinicopathologic, immunohistochemical, and molecular genetic study of 144 cases. Am J Surg Pathol. 2001;25(9):1121–33.

    Article  CAS  PubMed  Google Scholar 

  1002. Kaneko M, Kawai K, Murono K, Nishikawa T, Sasaki K, Otani K, et al. Giant gastrointestinal stromal tumor of the vermiform appendix: a case report. Mol Clin Oncol. 2017;7(3):399–403.

    Article  PubMed  PubMed Central  Google Scholar 

  1003. Chun JM, Lim KH. Gastrointestinal stromal tumor of the vermiform appendix mimicking Meckel's diverticulum: case report with literature review. Int J Surg Case Rep. 2016;21:20–2.

    Article  PubMed  PubMed Central  Google Scholar 

  1004. Guo L, He K, Xu X, Li G, Li Z, Xia Y, et al. Giant appendiceal neurofibroma in von Recklinghausen's disease: a case report and literature review. Oncol Lett. 2014;8(5):1957–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1005. Natalia C, Koh CE, Lee PJ. Giant appendiceal leiomyosarcoma: a rare and unusual tumour. Case Rep Surg. 2011;2011:384762.

    PubMed  PubMed Central  Google Scholar 

  1006. Suh SW, Park JM, Choi YS, Cha SJ, Chang IT, Kim BG. Laparoscopic approach to a case of appendicular schwannoma. J Korean Soc Coloproctol. 2010;26(4):302–6.

    Article  PubMed  PubMed Central  Google Scholar 

  1007. Matkowskyj KA, Rao MS, Raparia K. Transcription factor E3 protein-positive perivascular epithelioid cell tumor of the appendix presenting as acute appendicitis: a case report and review of the literature. Arch Pathol Lab Med. 2013;137(3):434–7.

    Article  PubMed  Google Scholar 

  1008. Nelson RA, Levine AM, Bernstein L, Smith DD, Lai LL. Changing patterns of anal canal carcinoma in the United States. J Clin Oncol. 2013;31(12):1569–75.

    Article  PubMed  PubMed Central  Google Scholar 

  1009. Jemal A, Simard EP, Dorell C, Noone AM, Markowitz LE, Kohler B, et al. Annual Report to the Nation on the Status of Cancer, 1975-2009, featuring the burden and trends in human papillomavirus(HPV)-associated cancers and HPV vaccination coverage levels. J Natl Cancer Inst. 2013;105(3):175–201.

    Article  PubMed  PubMed Central  Google Scholar 

  1010. Shiels MS, Kreimer AR, Coghill AE, Darragh TM, Devesa SS. Anal cancer incidence in the United States, 1977-2011: distinct patterns by histology and behavior. Cancer Epidemiol Biomark Prev. 2015;24(10):1548–56.

    Article  Google Scholar 

  1011. Chiao EY, Krown SE, Stier EA, Schrag D. A population-based analysis of temporal trends in the incidence of squamous anal canal cancer in relation to the HIV epidemic. J Acquir Immune Defic Syndr. 2005;40(4):451–5.

    Article  PubMed  Google Scholar 

  1012. Baricevic I, He X, Chakrabarty B, Oliver AW, Bailey C, Summers J, et al. High-sensitivity human papilloma virus genotyping reveals near universal positivity in anal squamous cell carcinoma: different implications for vaccine prevention and prognosis. Eur J Cancer. 2015;51(6):776–85.

    Article  PubMed  CAS  Google Scholar 

  1013. Patel HS, Silver AR, Northover JM. Anal cancer in renal transplant patients. Int J Color Dis. 2007;22(1):1–5.

    Article  Google Scholar 

  1014. Nagle D. Anal squamous cell carcinoma in the HIV-positive patient. Clin Colon Rectal Surg. 2009;22(2):102–6.

    Article  PubMed  PubMed Central  Google Scholar 

  1015. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370(9581):59–67.

    Article  PubMed  Google Scholar 

  1016. Daling JR, Weiss NS, Hislop TG, Maden C, Coates RJ, Sherman KJ, et al. Sexual practices, sexually transmitted diseases, and the incidence of anal cancer. N Engl J Med. 1987;317(16):973–7.

    Article  PubMed  CAS  Google Scholar 

  1017. van de Laar TJ, Richel O. Emerging viral STIs among HIV-positive men who have sex with men: the era of hepatitis C virus and human papillomavirus. Sex Transm Infect. 2017;93(5):368–73.

    Article  PubMed  Google Scholar 

  1018. Uronis HE, Bendell JC. Anal cancer: an overview. Oncologist. 2007;12(5):524–34.

    Article  PubMed  Google Scholar 

  1019. Welton ML, Sharkey FE, Kahlenberg MS. The etiology and epidemiology of anal cancer. Surg Oncol Clin N Am. 2004;13(2):263–75.

    Article  PubMed  Google Scholar 

  1020. Schim van der Loeff MF, Mooij SH, Richel O, de Vries HJ, Prins JM. HPV and anal cancer in HIV-infected individuals: a review. Curr HIV/AIDS Rep. 2014;11(3):250–62.

    Article  PubMed  Google Scholar 

  1021. Das P, Crane CH, Eng C, Ajani JA. Prognostic factors for squamous cell cancer of the anal canal. Gastrointest Cancer Res. 2008;2(1):10–4.

    PubMed  PubMed Central  Google Scholar 

  1022. Silverberg MJ, Lau B, Justice AC, Engels E, Gill MJ, Goedert JJ, et al. Risk of anal cancer in HIV-infected and HIV-uninfected individuals in North America. Clin Infect Dis. 2012;54(7):1026–34.

    Article  PubMed  PubMed Central  Google Scholar 

  1023. Fenger C, Nielsen VT. Intraepithelial neoplasia in the anal canal. The appearance and relation to genital neoplasia. Acta Pathol Microbiol Immunol Scand A. 1986;94(5):343–9.

    PubMed  CAS  Google Scholar 

  1024. Northfelt DW, Swift PS, Palefsky JM. Anal neoplasia. Pathogenesis, diagnosis, and management. Hematol Oncol Clin North Am. 1996;10(5):1177–87.

    Article  PubMed  CAS  Google Scholar 

  1025. Darragh TM, Colgan TJ, Thomas Cox J, Heller DS, Henry MR, Luff RD, et al. The Lower Anogenital Squamous Terminology Standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Int J Gynecol Pathol. 2013;32(1):76–115.

    Article  PubMed  Google Scholar 

  1026. Roma AA, Liu X, Patil DT, Xie H, Allende D. Proposed terminology for anal squamous lesions: its application and interobserver agreement among pathologists in academic and community hospitals. Am J Clin Pathol. 2017;148(1):81–90.

    Article  PubMed  Google Scholar 

  1027. Hickman RA, Bradshaw AD, Cassai N, Neto AG, Zhou D, Fu T, et al. A rare case of anal carcinosarcoma with human papilloma virus infection in both biphasic tumor elements: an immunohistochemical, molecular and ultrastructural study. Papillomavirus Res. 2016;2:164–6.

    Article  PubMed  PubMed Central  Google Scholar 

  1028. Kondo R, Hanamura N, Kobayashi M, Seki T, Adachi W, Ishii K. Mucoepidermoid carcinoma of the anal canal: an immunohistochemical study. J Gastroenterol. 2001;36(7):508–14.

    Article  PubMed  CAS  Google Scholar 

  1029. Dougherty BG, Evans HL. Carcinoma of the anal canal: a study of 79 cases. Am J Clin Pathol. 1985;83(2):159–64.

    Article  PubMed  CAS  Google Scholar 

  1030. Dougherty LS, Hull T. Perineal endometriosis with anal sphincter involvement: report of a case. Dis Colon Rectum. 2000;43(8):1157–60.

    Article  PubMed  CAS  Google Scholar 

  1031. Cimino-Mathews A, Sharma R, Illei PB. Detection of human papillomavirus in small cell carcinomas of the anus and rectum. Am J Surg Pathol. 2012;36(7):1087–92.

    Article  PubMed  Google Scholar 

  1032. Chu QD, Vezeridis MP, Libbey NP, Wanebo HJ. Giant condyloma acuminatum (Buschke-Lowenstein tumor) of the anorectal and perianal regions. Analysis of 42 cases. Dis Colon Rectum. 1994;37(9):950–7.

    Article  PubMed  CAS  Google Scholar 

  1033. Ackerman LV. Verrucous carcinoma of the oral cavity. Surgery. 1948;23(4):670–8.

    PubMed  CAS  Google Scholar 

  1034. Zidar N, Langner C, Odar K, Hosnjak L, Kamaradova K, Daum O, et al. Anal verrucous carcinoma is not related to infection with human papillomaviruses and should be distinguished from giant condyloma (Buschke-Lowenstein tumour). Histopathology. 2017;70(6):938–45.

    Article  PubMed  Google Scholar 

  1035. del Pino M, Bleeker MC, Quint WG, Snijders PJ, Meijer CJ, Steenbergen RD. Comprehensive analysis of human papillomavirus prevalence and the potential role of low-risk types in verrucous carcinoma. Mod Pathol. 2012;25(10):1354–63.

    Article  PubMed  CAS  Google Scholar 

  1036. Odar K, Kocjan BJ, Hosnjak L, Gale N, Poljak M, Zidar N. Verrucous carcinoma of the head and neck - not a human papillomavirus-related tumour? J Cell Mol Med. 2014;18(4):635–45.

    Article  PubMed  CAS  Google Scholar 

  1037. Wells M, Robertson S, Lewis F, Dixon MF. Squamous carcinoma arising in a giant peri-anal condyloma associated with human papillomavirus types 6 and 11. Histopathology. 1988;12(3):319–23.

    Article  PubMed  CAS  Google Scholar 

  1038. Keating JT, Cviko A, Riethdorf S, Riethdorf L, Quade BJ, Sun D, et al. Ki-67, cyclin E, and p16INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia. Am J Surg Pathol. 2001;25(7):884–91.

    Article  PubMed  CAS  Google Scholar 

  1039. Kong CS, Balzer BL, Troxell ML, Patterson BK, Longacre TA. p16INK4A immunohistochemistry is superior to HPV in situ hybridization for the detection of high-risk HPV in atypical squamous metaplasia. Am J Surg Pathol. 2007;31(1):33–43.

    Article  PubMed  Google Scholar 

  1040. Chung JH, Sanford E, Johnson A, Klempner SJ, Schrock AB, Palma NA, et al. Comprehensive genomic profiling of anal squamous cell carcinoma reveals distinct genomically defined classes. Ann Oncol. 2016;27(7):1336–41.

    Article  PubMed  CAS  Google Scholar 

  1041. Meulendijks D, Tomasoa NB, Dewit L, Smits PH, Bakker R, van Velthuysen ML, et al. HPV-negative squamous cell carcinoma of the anal canal is unresponsive to standard treatment and frequently carries disruptive mutations in TP53. Br J Cancer. 2015;112(8):1358–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1042. Boman BM, Moertel CG, O'Connell MJ, Scott M, Weiland LH, Beart RW, et al. Carcinoma of the anal canal. A clinical and pathologic study of 188 cases. Cancer. 1984;54(1):114–25.

    Article  PubMed  CAS  Google Scholar 

  1043. Singh R, Nime F, Mittelman A. Malignant epithelial tumors of the anal canal. Cancer. 1981;48(2):411–5.

    Article  PubMed  CAS  Google Scholar 

  1044. AJCC Cancer staging manual. 8th. New York: Springer Science+Business Media; 2016. pages cm p.

    Google Scholar 

  1045. Ajani JA, Winter KA, Gunderson LL, Pedersen J, Benson AB 3rd, Thomas CR Jr, et al. Prognostic factors derived from a prospective database dictate clinical biology of anal cancer: the intergroup trial (RTOG 98-11). Cancer. 2010;116(17):4007–13.

    Article  PubMed  Google Scholar 

  1046. Glynne-Jones R, Rao S. Treatment of the primary tumor in anal canal cancers. Surg Oncol Clin N Am. 2017;26(1):73–90.

    Article  PubMed  Google Scholar 

  1047. Glynne-Jones R, Sebag-Montefiore D, Adams R, Gollins S, Harrison M, Meadows HM, et al. Prognostic factors for recurrence and survival in anal cancer: generating hypotheses from the mature outcomes of the first United Kingdom Coordinating Committee on Cancer Research Anal Cancer Trial (ACT I). Cancer. 2013;119(4):748–55.

    Article  PubMed  CAS  Google Scholar 

  1048. Arora N, Gupta A, Zhu H, Christie A, Meyer JJ, Khan SA, et al. Race- and sex-based disparities in the therapy and outcomes of squamous cell carcinoma of the anus. J Natl Compr Cancer Netw. 2017;15(8):998–1004.

    Article  Google Scholar 

  1049. Franklin RA, Giri S, Valasareddy P, Lands LT, Martin MG. Comparative survival of patients with anal adenocarcinoma, squamous cell carcinoma of the anus, and rectal adenocarcinoma. Clin Colorectal Cancer. 2016;15(1):47–53.

    Article  PubMed  Google Scholar 

  1050. Koulos J, Symmans F, Chumas J, Nuovo G. Human papillomavirus detection in adenocarcinoma of the anus. Mod Pathol. 1991;4(1):58–61.

    PubMed  CAS  Google Scholar 

  1051. Matalon SA, Mamon HJ, Fuchs CS, Doyle LA, Tirumani SH, Ramaiya NH, et al. Anorectal cancer: critical anatomic and staging distinctions that affect use of radiation therapy. Radiographics. 2015;35(7):2090–107.

    Article  PubMed  Google Scholar 

  1052. Kulkarni MP, Momin YA, Pandav AB, Sulhyan KR. Adenocarcinoma of the anal canal: a report of two cases with review of literature. Indian J Pathol Microbiol. 2016;59(3):404–6.

    Article  PubMed  Google Scholar 

  1053. Hobbs CM, Lowry MA, Owen D, Sobin LH. Anal gland carcinoma. Cancer. 2001;92(8):2045–9.

    Article  PubMed  CAS  Google Scholar 

  1054. Sakamoto T, Konishi F, Yoshida T, Yoshinaga Y, Izumo T, Lefor A. Adenocarcinoma arising from an anal gland-report of a case. Int J Surg Case Rep. 2014;5(5):234–6.

    Article  PubMed  PubMed Central  Google Scholar 

  1055. Iesalnieks I, Gaertner WB, Glass H, Strauch U, Hipp M, Agha A, et al. Fistula-associated anal adenocarcinoma in Crohn’s disease. Inflamm Bowel Dis. 2010;16(10):1643–8.

    Article  PubMed  Google Scholar 

  1056. Minicozzi A, Borzellino G, Momo R, Steccanella F, Pitoni F, de Manzoni G. Perianal Paget’s disease: presentation of six cases and literature review. Int J Color Dis. 2010;25(1):1–7.

    Article  Google Scholar 

  1057. Goldblum JR, Hart WR. Perianal Paget’s disease: a histologic and immunohistochemical study of 11 cases with and without associated rectal adenocarcinoma. Am J Surg Pathol. 1998;22(2):170–9.

    Article  PubMed  CAS  Google Scholar 

  1058. Sisodia S, Boushey R, Lee G, Marginean C, Gomes MM, Bhattacharya G, et al. Perianal pagetoid intraepithelial carcinoma. Case Rep Gastroenterol. 2017;11(1):109–13.

    Article  PubMed  PubMed Central  Google Scholar 

  1059. Sah SP, Kelly PJ, McManus DT, McCluggage WG. Diffuse CK7, CAM5.2 and BerEP4 positivity in pagetoid squamous cell carcinoma in situ (pagetoid Bowen’s disease) of the perianal region: a mimic of extramammary Paget’s disease. Histopathology. 2013;62(3):511–4.

    Article  PubMed  Google Scholar 

  1060. Aytac E, Ozdemir Y, Ozuner G. Long term outcomes of neuroendocrine carcinomas (high-grade neuroendocrine tumors) of the colon, rectum, and anal canal. J Visc Surg. 2014;151(1):3–7.

    Article  PubMed  CAS  Google Scholar 

  1061. Surag, Neeralagi C, Prasath A, Kumar P, Reddy B. Small cell carcinoma of anal canal – a rare case report. J Clin Diagn Res. 2016;10(9):PD14–PD5.

    PubMed  PubMed Central  CAS  Google Scholar 

  1062. Khan M, Dirweesh A, Alvarez C, Conaway H, Moser R. Anal neuroendocrine tumor masquerading as external hemorrhoids: a case report. Gastroenterology Res. 2017;10(1):56–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1063. Shia J. An update on tumors of the anal canal. Arch Pathol Lab Med. 2010;134(11):1601–11.

    Article  PubMed  Google Scholar 

  1064. Paterson C, Musselman L, Chorneyko K, Reid S, Rawlinson J. Merkel cell (neuroendocrine) carcinoma of the anal canal: report of a case. Dis Colon Rectum. 2003;46(5):676–8.

    Article  PubMed  CAS  Google Scholar 

  1065. Wang X, Bai P, Su H, Luo G, Zhong Z, Zhao X. Management of primary adenocarcinoma of the female urethra: report of two cases and review of the literature. Oncol Lett. 2012;4(5):951–4.

    Article  PubMed  PubMed Central  Google Scholar 

  1066. Chang AE, Karnell LH, Menck HR. The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer. 1998;83(8):1664–78.

    Article  PubMed  CAS  Google Scholar 

  1067. Ho SP, Tseng HH, King TM, Chow PC. Anal phyllodes tumor in a male patient: a unique case presentation and literature review. Diagn Pathol. 2013;8:49.

    Article  PubMed  PubMed Central  Google Scholar 

  1068. Balachandra B, Marcus V, Jass JR. Poorly differentiated tumours of the anal canal: a diagnostic strategy for the surgical pathologist. Histopathology. 2007;50(1):163–74.

    Article  PubMed  CAS  Google Scholar 

  1069. Sturiale A, Fabiani B, Naldini G. A rare case of leiomyoma of the internal anal sphincter. Int J Surg Case Rep. 2016;23:4–7.

    Article  PubMed  PubMed Central  Google Scholar 

  1070. Carvalho N, Albergaria D, Lebre R, Giria J, Fernandes V, Vidal H, et al. Anal canal gastrointestinal stromal tumors: case report and literature review. World J Gastroenterol. 2014;20(1):319–22.

    Article  PubMed  PubMed Central  Google Scholar 

  1071. Fujii T, Morita H, Yamaguchi S, Tsutsumi S, Asao T, Kuwano H. A rare case of granular cell tumor of the anal region: diagnostic difficulty to masses in the anal area. Int Surg. 2014;99(1):45–7.

    Article  PubMed  PubMed Central  Google Scholar 

  1072. Sweeney K, Petrelli N, Herrera L, Lopez C, Mittelman A. Cavernous hemangioma of the anus. J Surg Oncol. 1984;27(4):286–8.

    Article  PubMed  CAS  Google Scholar 

  1073. Nassif MO, Trabulsi NH, Bullard Dunn KM, Nahal A, Meguerditchian AN. Soft tissue tumors of the anorectum: rare, complex and misunderstood. J Gastrointest Oncol. 2013;4(1):82–94.

    PubMed  PubMed Central  Google Scholar 

  1074. Porta E, Cazzaniga A. Lipoma of the anal canal. Minerva Chir. 1979;34(22):1557–60.

    PubMed  CAS  Google Scholar 

  1075. Blakely ML, Andrassy RJ, Raney RB, Anderson JR, Wiener ES, Rodeberg DA, et al. Prognostic factors and surgical treatment guidelines for children with rhabdomyosarcoma of the perineum or anus: a report of Intergroup Rhabdomyosarcoma Studies I through IV, 1972 through 1997. J Pediatr Surg. 2003;38(3):347–53.

    Article  PubMed  Google Scholar 

  1076. Val-Bernal JF, Mayorga M, Diego C, Gonzalez-Vela MC. Pedunculated polypoid lymphangioma of the anal canal. Pathol Int. 2008;58(7):442–4.

    Article  PubMed  Google Scholar 

  1077. Tekin K, Sungurtekin U, Aytekin FO, Calli N, Erdem E, Ozden A, et al. Ectopic prostatic tissue of the anal canal presenting with rectal bleeding: report of a case. Dis Colon Rectum. 2002;45(7):979–80.

    Article  PubMed  Google Scholar 

  1078. Leonard D, Beddy D, Dozois EJ. Neoplasms of anal canal and perianal skin. Clin Colon Rectal Surg. 2011;24(1):54–63.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa W. Taggart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taggart, M.W., Foo, W.C., Lee, S.M. (2020). Tumors of the Gastrointestinal System Including the Pancreas. In: Moran, C.A., Kalhor, N., Weissferdt, A. (eds) Oncological Surgical Pathology . Springer, Cham. https://doi.org/10.1007/978-3-319-96681-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96681-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96680-9

  • Online ISBN: 978-3-319-96681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics