Skip to main content

Toward Computing with Spider Webs: Computational Setup Realization

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

Abstract

Spiders are able to extract crucial information, such as the location prey, predators, mates, and even broken threads from propagating web vibrations. The complex structure of the web suggests that the morphology itself might provide computational support in form of a mechanical signal processing system - often referred to as morphological computation. We present preliminary results on identifying these computational aspects in naturally spun webs. A recently presented definition for physical computational systems, consisting of three main elements: (i) a mathematical part, (ii) a computational setup with a theoretical and real part, and (iii) an interpretation, is employed for the first time, to characterize these morphological computation properties. Signal transmission properties of a real spider orb web, as the real part of a morphological computation setup, is investigated in response to step transverse inputs. The parameters of a lumped system model, as the theoretical part of a morphological computation setup, are identified empirically and with the help of an earlier FEM model for the same web. As the possible elements of a computational framework, the web transverse signal filtering, attenuation, delay, memory effect, and deformation modes are briefly discussed based on experimental data and numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vollrath, F., Selden, P.: The role of behavior in the evolution of spiders, silks, and webs. Ann. Rev.Ecol.Evol. Syst. 38(1), 819–846 (2007)

    Article  Google Scholar 

  2. Vollrath, F.: Coevolution of behaviour and material in the spiders web. In: Biomechanics in Animal Behaviour, pp. 315–29 (2000)

    Google Scholar 

  3. Slotta, U., Hess, S., Spie, K., Stromer, T., Serpell, L., Scheibel, T.: Spider silk and amyloid fibrils: a structural comparison. Macromol. Biosci. 7(2), 183–188 (2007)

    Article  Google Scholar 

  4. Guan, J., Vollrath, F., Porter, D.: Two mechanisms for supercontraction in nephila spider dragline silk. Biomacromolecules 12, 4030–4035 (2011)

    Article  Google Scholar 

  5. Masters, W.M., Markl, H.: Vibration signal transmission in spider orb webs. Science 213, 363–365 (1981)

    Article  Google Scholar 

  6. Barth, F.G., Geethabali: Spider vibration receptors: Threshold curves of individual slits in the metatarsal lyriform organ. J. Comp. Physiol. 148, 175–185 (1982)

    Article  Google Scholar 

  7. Mortimer, B., Soler, A., Siviour, C.R., Zaera, R., Vollrath, F.: Tuning the instrument: sonic properties in the spider’s web. J. R. Soc. Interface 13, 20160341 (2016)

    Article  Google Scholar 

  8. Mortimer, B., Soler, A., Siviour, C.R., Vollrath, F.: Remote monitoring of vibrational information in spider webs. Sci. Nature 105, 37 (2018)

    Article  Google Scholar 

  9. Aoyanagi, Y., Okumura, K.: Simple model for the mechanics of spider webs. Phys. Rev. Lett. 104, 038102 (2010)

    Article  Google Scholar 

  10. Soler, A., Zaera, R.: The secondary frame in spider orb webs: the detail that makes the difference. Sci. Rep. 6, 31265 (2016)

    Article  Google Scholar 

  11. Masters, W.M.: Vibrations in the orbwebs of nuctenea sclopetaria (Araneidae): I. Transmission through the web. Behav. Ecol. Sociobiol. 15(3), 207–215 (1984)

    Article  MathSciNet  Google Scholar 

  12. Masters, W.M.: Vibrations in the orbwebs of nuctenea sclopetaria (Araneidae): II. Prey and wind signals and the spider’s response threshold. Behav. Ecol. Sociobiol. 15(3), 217–223 (1984)

    Article  MathSciNet  Google Scholar 

  13. Krushynska, A.O., Bosia, F., Miniaci, M., Pugno, N.M.: Tunable spider-web inspired hybrid labyrinthine acoustic metamaterials for low-frequency sound control. New J. Phys. 19, 105001 (2017). arXiv:1701.07622

    Article  Google Scholar 

  14. Hauser, H., Füchslin, R.M., Pfeifer, R.: Opinions and Outlooks on Morphological Computation. E-Book (2014)

    Google Scholar 

  15. Nakajima, K., Li, T., Hauser, H., Pfeifer, R.: Exploiting short-term memory in soft body dynamics as a computational resource. J. R. Soc. Interface 11, 20140437 (2014)

    Article  Google Scholar 

  16. Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Information processing via physical soft body. Sci. Rep. 5, 10487 (2015)

    Article  Google Scholar 

  17. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: The role of feedback in morphological computation with compliant bodies. Biol. Cybern. 106, 595–613 (2012)

    Article  MathSciNet  Google Scholar 

  18. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011)

    Article  MathSciNet  Google Scholar 

  19. Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, Cambridge (2006). Google-Books-ID: EHPMv9MfgWwC

    Google Scholar 

  20. Sornkarn, N., Howard, M., Nanayakkara, T.: Internal impedance control helps information gain in embodied perception. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 6685–6690 (2014)

    Google Scholar 

  21. Sadati, S., Sullivan, L., Walker, I., Althoefer, K., Nanayakkara, T.: Three-dimensional-printable thermoactive helical interface with decentralized morphological stiffness control for continuum manipulators. IEEE Robot. Autom. Lett. 3, 2283–2290 (2018)

    Article  Google Scholar 

  22. Zhao, Q., Nakajima, K., Sumioka, H., Hauser, H., Pfeifer, R.: Spine dynamics as a computational resource in spine-driven quadruped locomotion. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1445–1451, November 2013

    Google Scholar 

  23. Ghazi-Zahedi, K., Haeufle, D.F.B., Montfar, G., Schmitt, S., Ay, N.: Evaluating morphological computation in muscle and DC-motor driven models of hopping movements. Front. Robot. AI 3, 42 (2016)

    Article  Google Scholar 

  24. Ghazi-Zahedi, K., Langer, C., Ay, N.: Morphological computation: synergy of body and brain. Entropy 19, 456 (2017)

    Article  Google Scholar 

  25. Füchslin, R.M., Dzyakanchuk, A., Flumini, D., Hauser, H., Hunt, K.J., Luchsinger, R.H., Reller, B., Scheidegger, S., Walker, R.: Morphological computation and morphological control: steps toward a formal theory and applications. Artif. Life 19, 9–34 (2012)

    Article  Google Scholar 

  26. Giunti, M.: Computation, Dynamics, and Cognition. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  27. Giunti, M.: What is a physical realization of a computational system? ISONOMIA, 9(Epistemologica Series, Special Issue: Reasoning, Metaphor and Science), 177–192 (2017)

    Google Scholar 

  28. Sadati, S., Naghibi, S., Naraghi, M.: An automatic algorithm to derive linear vector form of lagrangian equation of motion with collision and constraint. Procedia Comput. Sci. 76, 217–222 (2015)

    Article  Google Scholar 

  29. Sadati, S.: AutoTMTDyn Software Package, May 2017. https://github.com/hadisdt/AutoTMTDyn

Download references

Acknowledgment

This work is supported by the Leverhulme Trust Research Project, “Computing with spiders’ web”, number RPG-2016-345, granted to H.H. and F.V.; and the Royal Academy of Engineering (research fellowship RF1516/15/11), granted to L.R. With special thanks to Dr. Helmut Hauser, Dr. Ludovic Renson, Dr. Beth Mortimer, Prof. Fritz Vollrth, Dr. S. Elnaz Naghibi and Alan Quille who contribute to this research by helpful discussions, exchanging ideas, proofreading the draft and providing helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Hadi Sadati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadati, S.M.H., Williams, T. (2018). Toward Computing with Spider Webs: Computational Setup Realization. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics