Skip to main content

Explicit-Solvent All-Atom Molecular Dynamics of Peptide Aggregation

  • Chapter
  • First Online:

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 8))

Abstract

Recent advances in computational technology have allowed us to simulate biomolecular processes on timescales that begin to reach the rates of peptide aggregation phenomena. Molecular dynamics simulations have evolved into a mature technique to the extent that they can be employed as a highly productive tool to gain meaningful insights into the structure, dynamics and molecular mechanisms of protein aggregation. In this chapter, we describe the basics of explicit solvent all-atom molecular dynamics simulations and its applications for studying early stages of aggregation processes of two short pentapeptides: KLVFF and FVFLM, related to Alzheimer’s disease and preeclampsia, respectively. We focus on certain important problems in the field of protein aggregation that explicit solvent all-atom molecular dynamics simulation studies could resolve. This includes how fibril formation rates depend on a number of factors such as the presence of short peptides and population of fibril-prone conformations. Specific applications of atomistic simulations in explicit solvent to address these two issues are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)

    Article  Google Scholar 

  2. Anfinsen, C.B.: Principles that govern folding of protein chains. Science 181(4096), 223–230 (1973)

    Article  Google Scholar 

  3. Balbach, J.J., Ishii, Y., Antzutkin, O.N., Leapman, R.D., Rizzo, N.W., Dyda, F., Reed, J., Tycko, R.: Amyloid fibril formation by Abeta(16–22), a seven-residue fragment of the Alzheimer’s beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39(45), 13748–13759 (2000)

    Article  Google Scholar 

  4. Barz, B., Wales, D.J., Strodel, B.: A kinetic approach to the sequence-aggregation relationship in disease-related protein assembly. J. Phys. Chem. B 118(4), 1003–1011 (2014)

    Article  Google Scholar 

  5. Berendsen, H.J.C, Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Interaction models for water in relation to protein hydration. Intermolecular Forces 14, 331–442 (1981)

    Google Scholar 

  6. Berg, B.A., Neuhaus, T.: Multicanonical algorithms for 1st order phase-transitions. Phys. Lett. B 267(2), 249–253 (1991)

    Article  Google Scholar 

  7. Berhanu, W.M., Alred, E.J., Hansmann, U.H.E.: Stability of Osaka mutant and wild-type fibril models. J. Phys. Chem. B 119(41), 13063–13070 (2015)

    Article  Google Scholar 

  8. Bernhardt, N.A., Xi, W.H., Wang, W., Hansmann, U.H.E.: Simulating protein fold switching by replica exchange with tunneling (vol 12, pg 5656, 2016). J. Chem. Theory Comput. 13(1), 393–394 (2017)

    Article  Google Scholar 

  9. Bhavaraju, M., Hansmann, U.H.E.: Effect of single point mutations in a form of systemic amyloidosis. Protein Sci. 24(9), 1451–1462 (2015)

    Article  Google Scholar 

  10. Blaszczyk, M., Kurcinski, M., Kouza, M., Wieteska, L., Debinski, A., Kolinski, A., Kmiecik, S.: Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods 93, 72–83 (2016)

    Article  Google Scholar 

  11. Blokhuis, A.M., Groen, E.J.N., Koppers, M., van den Berg, L.H., Pasterkamp, R.J.: Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 125(6), 777–794 (2013)

    Article  Google Scholar 

  12. Boczko, E.M., Brooks, C.L.: First-Principles calculation of the folding free-energy of a 3-helix bundle protein. Science 269(5222), 393–396 (1995)

    Article  Google Scholar 

  13. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: Charmm—A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983)

    Article  Google Scholar 

  14. Buhimschi, I., Jing, H.W., Axe, M., Ray, W., Zhao, G.M., Huang, C.S., Song, Y., Wysocki, V., Buhimschi, C.: Shotgun proteomics of the urine misfoldome identifies molecular signatures of preeclampsia subphenotypes. Am. J. Obstet. Gynecol. 212(1), S34 (2015)

    Article  Google Scholar 

  15. Buhimschi, I.A., Nayeri, U.A., Zhao, G., Shook, L.L., Pensalfini, A., Funai, E.F., Bernstein, I.M., Glabe, C.G., Buhimschi, C.S.: Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci. Transl. Med. 6(245), 245–292 (2014)

    Article  Google Scholar 

  16. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007)

    Article  Google Scholar 

  17. Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)

    Article  Google Scholar 

  18. Castillo, V., Grana-Montes, R., Sabate, R., Ventura, S.: Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes. Biotechnol. J. 6(6), 674–685 (2011)

    Article  Google Scholar 

  19. Chafekar, S.M., Malda, H., Merkx, M., Meijer, E.W., Viertl, D., Lashuel, H.A., Baas, F., Scheper, W.: Branched KLVFF tetramers strongly potentiate inhibition of beta-amyloid aggregation. ChemBioChem 8(15), 1857–1864 (2007)

    Article  Google Scholar 

  20. Chen, W.T., Hong, C.J., Lin, Y.T., Chang, W.H., Huang, H.T., Liao, J.Y., Chang, Y.J., Hsieh, Y.F., Cheng, C.Y., Liu, H.C., Chen, Y.R., Cheng, I.H.: Amyloid-beta (Abeta) D7H mutation increases oligomeric Abeta42 and alters properties of Abeta-zinc/copper assemblies. PLoS ONE 7(4), e35807 (2012)

    Article  Google Scholar 

  21. Chiti, F., Dobson, C.M.: Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86(86), 27–68 (2017)

    Article  Google Scholar 

  22. Coskuner, O., Wise-Scira, O., Perry, G., Kitahara, T.: The structures of the E22 delta mutant-type amyloid-beta alloforms and the impact of E22 delta mutation on the structures of the wild-type amyloid-beta alloforms. ACS Chem. Neurosci. 4(2), 310–320 (2013)

    Article  Google Scholar 

  23. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald—An N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

    Article  Google Scholar 

  24. Di Fede, G., Catania, M., Morbin, M., Rossi, G., Suardi, S., Mazzoleni, G., Merlin, M., Giovagnoli, A.R., Prioni, S., Erbetta, A., Falcone, C., Gobbi, M., Colombo, L., Bastone, A., Beeg, M., Manzoni, C., Francescucci, B., Spagnoli, A., Cantu, L., Del Favero, E., Levy, E., Salmona, M., Tagliavini, F.: A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 323(5920), 1473–1477 (2009)

    Article  Google Scholar 

  25. Dobson, C.M.: Protein folding and misfolding. Nature 426(6968), 884–890 (2003)

    Article  Google Scholar 

  26. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Elsevier (1996)

    Google Scholar 

  27. Frydman-Marom, A., Rechter, M., Shefler, I., Bram, Y., Shalev, D.E., Gazit, E.: Cognitive-performance recovery of Alzheimer’s disease model mice by modulation of early soluble amyloidal assemblies. Angew. Chem. Int. Ed. Engl. 48(11), 1981–1986 (2009)

    Article  Google Scholar 

  28. Garbuzynskiy, S.O., Lobanov, M.Y., Galzitskaya, O.V.: FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26(3), 326–332 (2010)

    Article  Google Scholar 

  29. Gazit, E.: Self assembly of short aromatic peptides into amyloid fibrils and related nanostructures. Prion 1(1), 32–35 (2007)

    Article  Google Scholar 

  30. Gordon, D.J., Tappe, R., Meredith, S.C.: Design and characterization of a membrane permeable N-methyl amino acid-containing peptide that inhibits Abeta(1–40) fibrillogenesis. J. Peptide Res. 60(1), 37–55 (2002)

    Article  Google Scholar 

  31. Hamaguchi, T., Ono, K., Yamada, M.: Anti-amyloidogenic therapies: strategies for prevention and treatment of Alzheimer’s disease. Cell. Mol. Life Sci. 63(13), 1538–1552 (2006)

    Article  Google Scholar 

  32. Hansmann, U.H.E.: Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 281(1–3), 140–150 (1997)

    Article  Google Scholar 

  33. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997)

    Article  Google Scholar 

  34. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  35. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C.: Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins-Struct. Funct. Bioinf. 65(3), 712–725 (2006)

    Article  Google Scholar 

  36. Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65(6), 1604–1608 (1996)

    Article  Google Scholar 

  37. Jing, H.W., Zhao, G.M., Axe, M., Buhimschi, C.S., Wysocki, V., Buhimschi, I.A.: Protein enrichment using Congo red (CR) affinity enhances characterization of the urine misfoldome in preeclampsia (PE). Am. J. Obstet. Gynecol. 214(1), S408 (2016)

    Article  Google Scholar 

  38. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)

    Article  Google Scholar 

  39. Jorgensen, W.L., Tiradorives, J.: The opls potential functions for proteins-energy minimizations for crystals of cyclic-peptides and crambin. J. Am. Chem. Soc. 110(6), 1657–1666 (1988)

    Article  Google Scholar 

  40. Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A.E., Kolinski, A.: Coarse-grained protein models and their applications. Chem. Rev. 116(14), 7898–7936 (2016)

    Article  Google Scholar 

  41. Kolinski, A.: Protein modeling and structure prediction with a reduced representation. Acta Biochim. Pol. 51(2), 349–371 (2004)

    Google Scholar 

  42. Kouza, M., Banerji, A., Kolinski, A., Buhimschi, I.A., Kloczkowski, A.: Oligomerization of FVFLM peptides and their ability to inhibit beta amyloid peptides aggregation: consideration as a possible model. Phys. Chem. Chem. Phys. 19(4), 2990–2999 (2017)

    Article  Google Scholar 

  43. Kouza, M., Co, N.T., Nguyen, P.H., Kolinski, A., Li, M.S.: Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models. J. Chem. Phys. 142(14), 04B610_1 (2015)

    Article  Google Scholar 

  44. Kouza, M., Faraggi, E., Kolinski, A., Kloczkowski, A.: The GOR method of protein secondary structure prediction, and its application as protein aggregation prediction tool. In: Zhou, Y., Kloczkowski, A., Faraggi, E., Yang, Y. (eds.) Prediction of Protein Secondary Structure. vol. 1484, pp. 7–24. Humana Press, New York (2017)

    Google Scholar 

  45. Kouza, M., Hansmann, U.H.E.: Velocity scaling for optimizing replica exchange molecular dynamics. J. Chem. Phys. 134(4), 01B630 (2011)

    Article  Google Scholar 

  46. Kouza, M., Hu, C.K., Li, M.S.: New force replica exchange method and protein folding pathways probed by force-clamp technique. J. Chem. Phys. 128(4), 01B618 (2008)

    Article  Google Scholar 

  47. Kouza, M., Hu, C.K., Li, M.S., Kolinski, A.: A structure-based model fails to probe the mechanical unfolding pathways of the titin I27 domain. Journal of Chemical Physics 139(6), 08B615 (2013)

    Article  Google Scholar 

  48. Kouza, M., Hu, C.K., Zung, H., Li, M.S.: Protein mechanical unfolding: Importance of non-native interactions. J. Chem. Phys. 131(21), 12B608 (2009)

    Article  Google Scholar 

  49. Kouza, M., Lan, P.D., Gabovich, A.M., Kolinski, A., Li, M.S.: Switch from thermal to force-driven pathways of protein refolding. J. Chem. Phys. 146(13), 135101 (2017)

    Article  Google Scholar 

  50. Kubelka, J., Hofrichter, J., Eaton, W.A.: The protein folding ‘speed limit’. Curr. Opin. Struct. Biol. 14(1), 76–88 (2004)

    Article  Google Scholar 

  51. Li, M.S., Co, N.T., Reddy, G., Hu, C.K., Straub, J.E., Thirumalai, D.: Factors governing fibrillogenesis of polypeptide chains revealed by lattice models. Phys. Rev. Lett. 105(21), 218101 (2010)

    Google Scholar 

  52. Lindorff-Larsen, K., Maragakis, P., Piana, S., Shaw, D.E.: Picosecond to millisecond structural dynamics in human ubiquitin. J. Phys. Chem. B 120(33), 8313–8320 (2016)

    Article  Google Scholar 

  53. Liwo, A., He, Y., Scheraga, H.A.: Coarse-grained force field: general folding theory. Phys. Chem. Chem. Phys. 13(38), 16890–16901 (2011)

    Article  Google Scholar 

  54. Lu, J.X., Qiang, W., Yau, W.M., Schwieters, C.D., Meredith, S.C., Tycko, R.: Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6), 1257–1268 (2013)

    Article  Google Scholar 

  55. Lu, Y., Wei, G.H., Derreumaux, P.: Effects of G33A and G33I mutations on the structures of monomer and dimer of the amyloid-beta fragment 29–42 by replica exchange molecular dynamics simulations. J. Phys. Chem. B 115(5), 1282–1288 (2011)

    Article  Google Scholar 

  56. Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Doeli, H., Schubert, D., Riek, R.: 3D structure of Alzheimer’s amyloid-beta(1–42) fibrils. Proc. Natl. Acad. Sci. U S A 102(48), 17342–17347 (2005)

    Article  Google Scholar 

  57. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007)

    Article  Google Scholar 

  58. Mazor, Y., Gilead, S., Benhar, I., Gazit, E.: Identification and characterization of a novel molecular-recognition and self-assembly domain within the islet amyloid polypeptide. J. Mol. Biol. 322(5), 1013–1024 (2002)

    Article  Google Scholar 

  59. Mccammon, J.A., Gelin, B.R., Karplus, M.: Dyn. Folded Proteins. Nature 267(5612), 585–590 (1977)

    Article  Google Scholar 

  60. Micheletti, C., Laio, A., Parrinello, M.: Reconstructing the density of states by history-dependent metadynamics. Phys. Rev. Lett. 92(17), 170601 (2004)

    Google Scholar 

  61. Moreno-Gonzalez, I., Soto, C.: Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin. Cell Dev. Biol. 22(5), 482–487 (2011)

    Article  Google Scholar 

  62. Morriss-Andrews, A., Shea, J.E.: Simulations of protein aggregation: insights from atomistic and coarse-grained models. J. Phys. Chem. Lett. 5(11), 1899–1908 (2014)

    Article  Google Scholar 

  63. Morriss-Andrews, A., Shea, J.E.: Computational studies of protein aggregation: methods and applications. Annu. Rev. Phys. Chem. 66(66), 643–666 (2015)

    Article  Google Scholar 

  64. Nam, H.B., Kouza, M., Hoang, Z., Li, M.S.; Relationship between population of the fibril-prone conformation in the monomeric state and oligomer formation times of peptides: Insights from all-atom simulations. J. Chem. Phys. 132(16), 04B613 (2010)

    Article  Google Scholar 

  65. Nguyen, P.H., Li, M.S., Stock, G., Straub, J.E., Thirumalai, D.: Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism. Proc. Natl. Acad. Sci. U S A 104(1), 111–116 (2007)

    Article  Google Scholar 

  66. Ono, K., Condron, M.M., Teplow, D.B.: Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid beta-protein assembly and toxicity. J. Biol. Chem. 285(30), 23184–23195 (2010)

    Google Scholar 

  67. Peter, E.K., Pivkin, I.V., Shea, J.E.: A canonical replica exchange molecular dynamics implementation with normal pressure in each replica. J. Chem. Phys. 145(4), 044903 (2016)

    Article  Google Scholar 

  68. Petkova, A.T., Yau, W.M., Tycko, R.: Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 45(2), 498–512 (2006)

    Article  Google Scholar 

  69. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  70. Proctor, E.A., Fee, L., Tao, Y.Z., Redler, R.L., Fay, J.M., Zhang, Y.L., Lv, Z.J., Mercer, I.P., Deshmukh, M., Lyubchenko, Y.L., Dokholyan, N.V.: Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U S A 113(3), 614–619 (2016)

    Article  Google Scholar 

  71. Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.: GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7), 845–854 (2013)

    Article  Google Scholar 

  72. Rhee, Y.M., Sorin, E.J., Jayachandran, G., Lindahl, E., Pande, V.S.: Simulations of the role of water in the protein-folding mechanism. Proc. Natl. Acad. Sci. U S A 101(17), 6456–6461 (2004)

    Article  Google Scholar 

  73. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315), 1109–1112 (1997)

    Article  Google Scholar 

  74. Rojas, A.V., Liwo, A., Scheraga, H.A.: A study of the alpha-helical intermediate preceding the aggregation of the amino-terminal fragment of the beta amyloid peptide (Abeta(1–28)). J. Phys. Chem. B 115(44), 12978–12983 (2011)

    Article  Google Scholar 

  75. Scheraga, H.A., Khalili, M., Liwo, A.: Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 58, 57–83 (2007)

    Article  Google Scholar 

  76. Scott, W.R.P., Hunenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Kruger, P., van Gunsteren, W.F.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103(19), 3596–3607 (1999)

    Article  Google Scholar 

  77. Selkoe, D.J.: Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81(2), 741–766 (2001)

    Article  Google Scholar 

  78. Shakhnovich, E.: Protein folding thermodynamics and dynamics: Where physics, chemistry, and biology meet. Chem. Rev. 106(5), 1559–1588 (2006)

    Article  Google Scholar 

  79. Siwy, C.M., Lockhart, C., Klimov, D.K.: Is the conformational ensemble of Alzheimer’s Abeta 10–40 peptide force field dependent? Plos Computat. Biol. 13(1), e1005314 (2017)

    Google Scholar 

  80. Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314(1–2), 141–151 (1999)

    Article  Google Scholar 

  81. Tartaglia, G.G., Vendruscolo, M.: The Zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev. 37(7), 1395–1401 (2008)

    Article  Google Scholar 

  82. Tenidis, K., Waldner, M., Bernhagen, J., Fischle, W., Bergmann, M., Weber, M., Merkle, M.L., Voelter, W., Brunner, H., Kapurniotu, A.: Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. J. Mol. Biol. 295(4), 1055–1071 (2000)

    Article  Google Scholar 

  83. Thirumalai, D., Reddy, G., Straub, J.E.: Role of water in protein aggregation and amyloid polymorphism. Acc. Chem. Res. 45(1), 83–92 (2012)

    Article  Google Scholar 

  84. Tjernberg, L.O., Lilliehook, C., Callaway, D.J.E., Naslund, J., Hahne, S., Thyberg, J., Terenius, L., Nordstedt, C.: Controlling amyloid beta-peptide fibril formation with protease-stable ligands (vol 272, pg 12601, 1997). J. Biol. Chem. 272(28), 17894–17895 (1997)

    Google Scholar 

  85. Tjernberg, L.O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A.R., Thyberg, J., Terenius, L., Nordstedt, C.: Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271(15), 8545–8548 (1996)

    Article  Google Scholar 

  86. Tomiyama, T., Nagata, T., Shimada, H., Teraoka, R., Fukushima, A., Kanemitsu, H., Takuma, H., Kuwano, R., Imagawa, M., Ataka, S., Wada, Y., Yoshioka, E., Nishizaki, T., Watanabe, Y., Mori, H.: A new amyloid mu variant favoring oligomerization in Alzheimer’s-type dementia. Ann. Neurol. 63(3), 377–387 (2008)

    Article  Google Scholar 

  87. Tong, M., Cheng, S.B., Chen, Q., DeSousa, J., Stone, P.R., James, J.L., Chamley, L.W., Sharma, S.: Aggregated transthyretin is specifically packaged into placental nano-vesicles in preeclampsia. Sci. Rep. 7, 6694 (2017)

    Google Scholar 

  88. Viet, M.H., Ngo, S.T., Lam, N.S., Li, M.S.: Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. J. Phys. Chem. B 115(22), 7433–7446 (2011)

    Article  Google Scholar 

  89. Viet, M.H., Nguyen, P.H., Derreumaux, P., Li, M.S.: Effect of the English familial disease mutation (H6R) on the monomers and dimers of Abeta40 and Abeta42. ACS Chem. Neurosci. 5(8), 646–657 (2014)

    Article  Google Scholar 

  90. Viet, M.H., Nguyen, P.H., Ngo, S.T., Li, M.S., Derreumaux, P.: Effect of the Tottori familial disease mutation (D7N) on the monomers and dimers of Abeta40 and Abeta42. ACS Chem. Neurosci. 4(11), 1446–1457 (2013)

    Article  Google Scholar 

  91. Wabik, J., Kmiecik, S., Gront, D., Kouza, M., Kolinski, A.: Combining coarse-grained protein models with replica-exchange all-atom molecular dynamics. Int. J. Mol. Sci. 14(5), 9893–9905 (2013)

    Article  Google Scholar 

  92. Walti, M.A., Ravotti, F., Arai, H., Glabe, C.G., Wall, J.S., Bockmann, A., Guntert, P., Meier, B.H., Riek, R.: Atomic-resolution structure of a disease-relevant Abeta(1–42) amyloid fibril. Proc. Natl. Acad. Sci. U S A 113(34), E4976–E4984 (2016)

    Article  Google Scholar 

  93. Wang, J.N., Zhu, W.L., Li, G.H., Hansmann, U.H.E.: Velocity-scaling optimized replica exchange molecular dynamics of proteins in a hybrid explicit/implicit solvent. J. Chem. Phys. 135(8), 084115 (2011)

    Article  Google Scholar 

  94. Wu, C., Shea, J.E.: Coarse-grained models for protein aggregation. Curr. Opin. Struct. Biol. 21(2), 209–220 (2011)

    Article  Google Scholar 

  95. Xi, W.H., Hansmann, U.H.E.: Ring-like N-fold models of Abeta(42) fibrils. Sci. Rep. 7, 40787 (2017)

    Google Scholar 

  96. Xi, W.H., Vanderford, E.K., Hansmann, U.H.E.: Out-of-register Abeta(42) assemblies as models for neurotoxic oligomers and fibrils. J. Chem. Theory Comput. 14(2), 1099–1110 (2018)

    Article  Google Scholar 

  97. Xi, W.H., Wang, W.H., Abbott, G., Hansmann, U.H.E.: Stability of a recently found triple-beta-stranded Abeta 1–42 fibril motif. J. Phys. Chem. B 120(20), 4548–4557 (2016)

    Article  Google Scholar 

  98. Xiao, Y.L., Ma, B.Y., McElheny, D., Parthasarathy, S., Long, F., Hoshi, M., Nussinov, R., Ishii, Y.: Abeta(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 22(6), 499 (2015)

    Article  Google Scholar 

  99. Yan, L.M., Velkova, A., Tatarek-Nossol, M., Andreetto, E., Kapurniotu, A.: LAPP mimic blocks Abeta cytotoxic self-assembly: cross-suppression of amyloid toxicity of Abeta and IAPP suggests a molecular link between Alzheimer’s disease and type II diabetes. Angew. Chem. Int. Ed. 46(8), 1246–1252 (2007)

    Article  Google Scholar 

  100. Yasar, F., Bernhardt, N.A., Hansmann, U.H.E.: Replica-exchange-with-tunneling for fast exploration of protein landscapes. J. Chem. Phys. 143(22), 224102 (2015)

    Article  Google Scholar 

  101. Kouza, M., Co, N.T., Li, M.S., Kmiecik, S., Kolinski, A., Kloczkowski, A., Buhimschi, I.A.: Kinetics and mechanical stability of the fibril state control fibril formation time of polypeptide chains: A computational study. J. Chem. Phys. 148, 215106 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Girik Malik for critical reading of the manuscript. M. K. acknowledges the Polish Ministry of Science and Higher Education for financial support through “Mobilnosc Plus” Program No. 1287/MOB/IV/2015/0. A. Kol. and M. K. would like to acknowledge support from the National Science Center grant [MAESTRO 2014/14/A/ST6/00088]. IAB acknowledges support from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) R01HD084628 and The Research Institute at Nationwide Children’s Hospital’s John E. Fisher Endowed Chair for Neonatal and Perinatal Research. A. Klo. acknowledges support from National Science Foundation grant DBI 1661391, and Bridge funds provided by The Research Institute at Nationwide Children’s Hospital. This research was supported in part by the High Performance Computing Facility at The Research Institute at Nationwide Children’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Kouza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kouza, M., Kolinski, A., Buhimschi, I.A., Kloczkowski, A. (2019). Explicit-Solvent All-Atom Molecular Dynamics of Peptide Aggregation. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series on Bio- and Neurosystems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-95843-9_16

Download citation

Publish with us

Policies and ethics