Skip to main content

From Dot to Ring: Tunable Exciton Topology in Type-II InAs/GaAsSb Quantum Dots

  • Chapter
  • First Online:
Physics of Quantum Rings

Abstract

We present an experimental and theoretical study about the carrier confinement geometry and topology in InAs/GaAsSb quantum dots. The investigated sample consists of a field-effect device embedding a single layer of dot-in-a-well InAs/GaAsSb nanostructures. These nanostructures exhibit large electron-hole dipole moments and radiative lifetimes under externally applied electric fields. Both phenomena are related to the type-II band alignment existing between the two materials which, in principle, could also result in a change of the hole orbital confinement topology from simply to doubly connected. The latter aspect will be confirmed by ensemble magnetophotoluminescence experiments at 4.2 K. The oscillations observed in the photoluminescence intensity and degree of circular polarization will be described by an axially symmetric \(\mathbf {k}\cdot \mathbf {p}\) model combining vertical electric and magnetic fields. Due to the large spin-orbit coupling of III-Sb nanostructures, the modulation of the orbital confinement geometry and topology reported here shall open a venue to control the spin dynamics by external voltages. This exciting idea will be theoretically discussed through band-effective models including spin-orbit coupling and anisotropic confinement effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, Science 290(5500), 2282 (2000)

    Article  ADS  Google Scholar 

  2. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vuckovic, Phys. Rev. Lett. 95(1), 013904 (2005)

    Article  ADS  Google Scholar 

  3. C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Nature 419(6907), 594 (2002)

    Article  ADS  Google Scholar 

  4. Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Science 295, 102 (2002)

    Article  ADS  Google Scholar 

  5. C.L. Salter, R.M. Stevenson, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Nature 465(7298), 594 (2010)

    Article  ADS  Google Scholar 

  6. J.P. Lee, E. Murray, A.J. Bennett, D.J.P. Ellis, C. Dangel, I. Farrer, P. Spencer, D.A. Ritchie, A.J. Shields, Appl. Phys. Lett. 110(7), 071102 (2017)

    Article  ADS  Google Scholar 

  7. P. Munnelly, T. Heindel, A. Thoma, M. Kamp, S. Höfling, C. Schneider, S. Reitzenstein, ACS Photonics 4(4), 790 (2017)

    Article  Google Scholar 

  8. B. Dzurnak, R.M. Stevenson, J. Nilsson, J.F. Dynes, Z.L. Yuan, J. Skiba-Szymanska, I. Farrer, D.A. Ritchie, A.J. Shields, Appl. Phys. Lett. 107(26), 261101 (2015)

    Article  ADS  Google Scholar 

  9. K. Matsuda, S.V. Nair, H.E. Ruda, Y. Sugimoto, T. Saiki, K. Yamaguchi, Appl. Phys. Lett. 90(1), 013101 (2007)

    Article  ADS  Google Scholar 

  10. M.P. Young, C.S. Woodhead, J. Roberts, Y.J. Noori, M.T. Noble, A. Krier, E.P. Smakman, P.M. Koenraad, M. Hayne, R.J. Young, AIP Adv. 4(11), 117127 (2014)

    Article  ADS  Google Scholar 

  11. J.R. Orchard, C. Woodhead, J. Wu, M. Tang, R. Beanland, Y. Noori, H. Liu, R.J. Young, D.J. Mowbray, ACS Photonics 4(7), 1740 (2017)

    Article  Google Scholar 

  12. K. Akahane, N. Yamamoto, N. Ohtani, Phys. E 21(2–4), 295 (2004)

    Article  Google Scholar 

  13. H.Y. Liu, M.J. Steer, T.J. Badcock, D.J. Mowbray, M.S. Skolnick, P. Navaretti, K.M. Groom, M. Hopkinson, R.A. Hogg, Appl. Phys. Lett. 86(14), 143108 (2005)

    Article  ADS  Google Scholar 

  14. J.M. Ripalda, D. Granados, Y. González, A.M. Sánchez, S.I. Molina, J.M. García, Appl. Phys. Lett. 87(20), 202108 (2005)

    Article  ADS  Google Scholar 

  15. M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, D. Bimberg, Appl. Phys. Lett. 82(16), 2706 (2003)

    Article  ADS  Google Scholar 

  16. D. Alonso-Álvarez, B. Alén, J.M. García, J.M. Ripalda, Appl. Phys. Lett. 91, 263103 (2007)

    Article  ADS  Google Scholar 

  17. P. Klenovský, V. Křápek, D. Munzar, J. Humlíček, Appl. Phys. Lett. 97(20), 203107 (2010)

    Article  ADS  Google Scholar 

  18. J.M. Ulloa, J.M. Llorens, M. del Moral, M. Bozkurt, P.M. Koenraad, A. Hierro, J. Appl. Phys. 112(7), 074311 (2012)

    Article  ADS  Google Scholar 

  19. M. Hayne, R.J. Young, E.P. Smakman, T. Nowozin, P. Hodgson, J.K. Garleff, P. Rambabu, P.M. Koenraad, A. Marent, L. Bonato, A. Schliwa, D. Bimberg, J. Phys. D: Appl. Phys. 46(26), 264001 (2013)

    Article  ADS  Google Scholar 

  20. J.M. Llorens, L. Wewior, E.R.C.d. Oliveira, J.M. Ulloa, A.D. Utrilla, A. Guzmán, A. Hierro, B. Alén. Appl. Phys. Lett. 107(18), 183101 (2015)

    Article  ADS  Google Scholar 

  21. S. Nadj-Perge, V.S. Pribiag, J.W.G. van den Berg, K. Zuo, S.R. Plissard, E.P.A.M. Bakkers, S.M. Frolov, L.P. Kouwenhoven, Phys. Rev. Lett. 108(16), 166801 (2012)

    Article  ADS  Google Scholar 

  22. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336(6084), 1003 (2012)

    Article  ADS  Google Scholar 

  23. J.M. Ulloa, J.M. Llorens, B. Alén, D.F. Reyes, D.L. Sales, D. González, A. Hierro, Appl. Phys. Lett. 101(25), 253112 (2012)

    Article  ADS  Google Scholar 

  24. P.W. Fry, I.E. Itskevich, D.J. Mowbray, M.S. Skolnick, J.J. Finley, J.A. Barker, E.P. O’Reilly, L.R. Wilson, I.A. Larkin, P.A. Maksym, M. Hopkinson, M. Al-Khafaji, J.P.R. David, A.G. Cullis, G. Hill, J.C. Clark, Phys. Rev. Lett. 84(4), 733 (2000)

    Article  ADS  Google Scholar 

  25. R.J. Warburton, C. Schulhauser, D. Haft, C. Schaflein, K. Karrai, J.M. Garcia, W. Schoenfeld, P.M. Petroff, Phys. Rev. B 65(11), 113303 (2002)

    Article  ADS  Google Scholar 

  26. J.J. Finley, M. Sabathil, P. Vogl, G. Abstreiter, R. Oulton, A.I. Tartakovskii, D.J. Mowbray, M.S. Skolnick, S.L. Liew, A.G. Cullis, M. Hopkinson, Phys. Rev. B 70(20), 201308 (2004)

    Article  ADS  Google Scholar 

  27. P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. García, V.M. Fomin, V.N. Gladilin, J.T. Devreese, Appl. Phys. Lett. 87(13), 131902 (2005)

    Article  ADS  Google Scholar 

  28. J.M. García, B. Alén, J.P. Silveira, D. Granados, in Physics of Quantum Rings, ed. by V.M. Fomin, 1st edn. (Springer, Berlin, Heidelberg, 2014), Chap. 3

    Google Scholar 

  29. W. Sheng, J.P. Leburton, Phys. Rev. B 67(12), 125308 (2003)

    Article  ADS  Google Scholar 

  30. S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E.A. Stinaff, M.L. Kerfoot, M. Scheibner, A.S. Bracker, D. Gammon, Appl. Phys. Lett. 102(21), 213101 (2013)

    Article  ADS  Google Scholar 

  31. K.L. Janssens, B. Partoens, F.M. Peeters, Phys. Rev. B 67, 235325 (2003)

    Article  ADS  Google Scholar 

  32. P. Klenovský, P. Steindl, D. Geffroy, Sci. Rep. 7, srep45568 (2017)

    Google Scholar 

  33. N. Pavarelli, T.J. Ochalski, H.Y. Liu, K. Gradkowski, M. Schmidt, D.P. Williams, D.J. Mowbray, G. Huyet, Appl. Phys. Lett. 101(23), 231109 (2012)

    Article  ADS  Google Scholar 

  34. A. Hospodková, M. Zíková, J. Pangrác, J. Oswald, J. Kubištová, K. Kuldová, P. Hazdra, E. Hulicius, J. Phys. D: Appl. Phys. 46(9), 095103 (2013)

    Article  ADS  Google Scholar 

  35. D.A.B. Miller, D.S. Chemla, T.C. Damer, A.C. Gossard, W. Weigmann, T.H. Wood, C.A. Burrus, Phys. Rev. Lett. 53, 2173 (1984)

    Article  ADS  Google Scholar 

  36. J.A. Barker, E.P. O’Reilly, Phys. Rev. B 61(20), 13840 (2000)

    Article  ADS  Google Scholar 

  37. B. Alén, J. Bosch, D. Granados, J. Martínez-Pastor, J.M. García, L. González, Phys. Rev. B 75(4), 045319 (2007)

    Article  ADS  Google Scholar 

  38. Y.D. Jang, T.J. Badcock, D.J. Mowbray, M.S. Skolnick, J. Park, D. Lee, H.Y. Liu, M.J. Steer, M. Hopkinson, Appl. Phys. Lett. 92(25), 251905 (2008)

    Article  ADS  Google Scholar 

  39. W.T. Hsu, Y.A. Liao, F.C. Hsu, P.C. Chiu, J.I. Chyi, W.H. Chang, Appl. Phys. Lett. 99(7), 073108 (2011)

    Article  ADS  Google Scholar 

  40. A.G. Taboada, J.M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J.M. Ripalda, Phys. Rev. B 88(8), 085308 (2013)

    Article  ADS  Google Scholar 

  41. S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, P. Vogl, I.E.E.E. Trans. Electron Devices 54(9), 2137 (2007). https://doi.org/10.1109/TED.2007.902871

  42. J. Tatebayashi, A. Khoshakhlagh, S.H. Huang, G. Balakrishnan, L.R. Dawson, D.L. Huffaker, D.A. Bussian, H. Htoon, V. Klimov, Appl. Phys. Lett. 90(26), 261115 (2007)

    Article  ADS  Google Scholar 

  43. K.S. Hsu, T.T. Chiu, W.H. Lin, K.L. Chen, M.H. Shih, S.Y. Lin, Y.C. Chang, Appl. Phys. Lett. 98(5), 051105 (2011)

    Article  ADS  Google Scholar 

  44. A.D. Utrilla, J.M. Ulloa, A. Guzman, A. Hierro, Appl. Phys. Lett. 103(11), 111114 (2013)

    Article  ADS  Google Scholar 

  45. A. Gonzalo, A.D. Utrilla, D.F. Reyes, V. Braza, J.M. Llorens, D.F. Marrón, B. Alén, T. Ben, D. González, A. Guzman, A. Hierro, J.M. Ulloa, Sci. Rep. 7(1), 4012 (2017)

    Article  ADS  Google Scholar 

  46. I. Ramiro, J. Villa, C. Tablero, E. Antolín, A. Luque, A. Martí, J. Hwang, J. Phillips, A.J. Martin, J. Millunchick, Phys. Rev. B 96(12), 125422 (2017)

    Article  ADS  Google Scholar 

  47. W.S. Liu, H.M. Wu, F.H. Tsao, T.L. Hsu, J.I. Chyi, Solar Energy Mater. Solar Cells 105, 237 (2012)

    Article  Google Scholar 

  48. Y. Cheng, M. Fukuda, V.R. Whiteside, M.C. Debnath, P.J. Vallely, T.D. Mishima, M.B. Santos, K. Hossain, S. Hatch, H.Y. Liu, I.R. Sellers, Solar Energy Mater. Solar Cells 147, 94 (2016)

    Article  Google Scholar 

  49. S. Hatch, J. Wu, K. Sablon, P. Lam, M. Tang, Q. Jiang, H. Liu, Optics Express 22(103), A679 (2014)

    Article  ADS  Google Scholar 

  50. A.D. Utrilla, D.F. Reyes, J.M. Llorens, I. Artacho, T. Ben, D. González, Z. Gac̆ević, A. Kurtz, A. Guzmán, A. Hierro, J.M. Ulloa. Solar Energy Mater. and Solar Cells 159, 282 (2017)

    Google Scholar 

  51. M. Hayne, B. Bansal, Luminescence 27(3), 179 (2012)

    Article  Google Scholar 

  52. V.M. Fomin, in Physics of Quantum Rings, 2nd edn., ed. by V.M. Fomin (Springer, Cham, 2018), Chap. 1

    Google Scholar 

  53. I.R. Sellers, I.L. Kuskovsky, A.O. Govorov, B.D. McCombe, in Physics of Quantum Rings, 1st edn., ed. by V.M. Fomin (Springer, Berlin, Heidelberg, 2014), Chap. 11

    Google Scholar 

  54. Y. Aharonov, D. Bohm, Phys. Rev. 115(3), 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  55. A.O. Govorov, S.E. Ulloa, K. Karrai, R.J. Warburton, Phys. Rev. B Rapid Comm. 66, 081309R (2002)

    Article  ADS  Google Scholar 

  56. M.D. Teodoro, V.L. Campo Jr., V. López-Richard, E. Marega Jr., G.E. Marques, G.J. Salamo, in Physics of Quantum Rings, 2nd edn., ed. by V.M. Fomin (Springer, Cham, 2018), Chap. 10

    Google Scholar 

  57. V.M. Fomin (ed.), Physics of Quantum Rings (Springer, Berlin, Heidelberg, 2014)

    MATH  Google Scholar 

  58. L.G.G.V. Dias da Silva, S.E. Ulloa, T.V. Shahbazyan, Phys. Rev. B 72(12), 125327 (2005)

    Article  ADS  Google Scholar 

  59. M.D. Teodoro, V.L. Campo Jr., V. Lopez-Richard, E. Marega Jr., G.E. Marques, Y. Galvão Gobato, F. Iikawa, M.J.S.P. Brasil, Z.Y. AbuWaar, V.G. Dorogan, Y.I. Mazur, M. Benamara, G.J. Salamo, Phys. Rev. Lett. 104, 086401 (2010)

    Article  ADS  Google Scholar 

  60. H.D. Kim, R. Okuyama, K. Kyhm, M. Eto, R.A. Taylor, A.L. Nicolet, M. Potemski, G. Nogues, L.S. Dang, K.C. Je, J. Kim, J.H. Kyhm, K.H. Yoen, E.H. Lee, J.Y. Kim, I.K. Han, W. Choi, J. Song, Nano Lett. 16(1), 27 (2016)

    Article  ADS  Google Scholar 

  61. F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F.M. Peeters, C.C. Bof Bufon, C. Deneke, Y.H. Chen, A. Rastelli, O.G. Schmidt, V. Zwiller, Phys. Rev. B 82(7), 075309 (2010)

    Article  ADS  Google Scholar 

  62. B. Li, F.M. Peeters, Phys. Rev. B 83(11), 115448 (2011)

    Article  ADS  Google Scholar 

  63. E. Ribeiro, A.O. Govorov, W. Carvalho, G. Medeiros-Ribeiro, Phys. Rev. Lett. 92(12), 126402 (2004)

    Article  ADS  Google Scholar 

  64. I.L. Kuskovsky, W. MacDonald, A.O. Govorov, L. Mourokh, X. Wei, M.C. Tamargo, M. Tadic, F.M. Peeters, Phys. Rev. B 76, 035342 (2007)

    Article  ADS  Google Scholar 

  65. M. Royo, C. Segarra, A. Bertoni, G. Goldoni, J. Planelles, Phys. Rev. B 91(11), 115440 (2015)

    Article  ADS  Google Scholar 

  66. J.M. Llorens, E.R. Cardozo de Oliveira, L. Wevior, V. Lopes-Oliveira, V. López-Richard, J.M. Ulloa, M.D. Teodoro, G.E. Marques, A. García-Cristóbal, G.Q. Hai, B. Alén, ArXiv: 1710.08828 (2017)

  67. K.J. Nash, M.S. Skolnick, P.A. Claxton, J.S. Roberts, Phys. Rev. B 39(15), 10943 (1989)

    Article  ADS  Google Scholar 

  68. F. Ding, B. Li, F.M. Peeters, A. Rastelli, V. Zwiller, O.G. Schmidt, in Physics of Quantum Rings, 1st edn., ed. by V.M. Fomin (Springer, Berlin, Heidelberg, 2014), Chap. 12

    Google Scholar 

  69. D. Alonso-Álvarez, B. Alén, J.M. Ripalda, A. Rivera, A.G. Taboada, J.M. Llorens, Y. González, L. González, F. Briones, APL Mater. 1(2), 022112 (2013)

    Article  ADS  Google Scholar 

  70. M.D. Teodoro, A. Malachias, V. Lopes-Oliveira, D.F. Cesar, V. Lopez-Richard, G.E. Marques, E. Marega, M. Benamara, Y.I. Mazur, G.J. Salamo, J. Appl. Phys. 112(1), 014319 (2012)

    Article  ADS  Google Scholar 

  71. V. Krapek, P. Klenovsky, T. Sikola, Phys. Rev. B 92(19), 195430 (2015)

    Article  ADS  Google Scholar 

  72. W.C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11(11), 1635 (1996)

    Article  ADS  Google Scholar 

  73. V. Lopes-Oliveira, Y.I. Mazur, L.D. de Souza, L.A.B. Marçal, J. Wu, M.D. Teodoro, A. Malachias, V.G. Dorogan, M. Benamara, G.G. Tarasov, E. Marega, G.E. Marques, Z.M. Wang, M. Orlita, G.J. Salamo, V. Lopez-Richard, Phys. Rev. B 90(12), 125315 (2014)

    Article  ADS  Google Scholar 

  74. V. Lopes-Oliveira, L.K. Castelano, G.E. Marques, S.E. Ulloa, V. Lopez-Richard, Phys. Rev. B 92(3), 035441 (2015)

    Article  ADS  Google Scholar 

  75. N. Ares, V.N. Golovach, G. Katsaros, M. Stoffel, F. Fournel, L.I. Glazman, O.G. Schmidt, S. De Franceschi, Phys. Rev. Lett. 110(4), 046602 (2013)

    Article  ADS  Google Scholar 

  76. A.J. Bennett, M.A. Pooley, Y. Cao, N. Sköld, I. Farrer, D.A. Ritchie, A.J. Shields, Nat. Commun. 4, 1522 (2013)

    Article  ADS  Google Scholar 

  77. P. Corfdir, Y. Fontana, B. Van Hattem, E. Russo-Averchi, M. Heiss, A. Fontcuberta i Morral, R.T. Phillips. Appl. Phys. Lett. 105(22), 223111 (2014)

    Article  ADS  Google Scholar 

  78. V. Jovanov, T. Eissfeller, S. Kapfinger, E.C. Clark, F. Klotz, M. Bichler, J.G. Keizer, P.M. Koenraad, G. Abstreiter, J.J. Finley, Phys. Rev. B 83(16), 161303 (2011)

    Article  ADS  Google Scholar 

  79. F. Klotz, V. Jovanov, J. Kierig, E.C. Clark, D. Rudolph, D. Heiss, M. Bichler, G. Abstreiter, M.S. Brandt, J.J. Finley, Appl. Phys. Lett. 96(5), 053113 (2010)

    Article  ADS  Google Scholar 

  80. J.H. Prechtel, F. Maier, J. Houel, A.V. Kuhlmann, A. Ludwig, A.D. Wieck, D. Loss, R.J. Warburton, Phys. Rev. B 91(16), 165304 (2015)

    Article  ADS  Google Scholar 

  81. H.M.G.A. Tholen, J.S. Wildmann, A. Rastelli, R. Trotta, C.E. Pryor, E. Zallo, O.G. Schmidt, P.M. Koenraad, A.Y. Silov, Phys. Rev. B 94(24), 245301 (2016)

    Article  ADS  Google Scholar 

  82. L. Cabral, F.P. Sabino, V. Lopes-Oliveira, J.L.F. Da Silva, M.P. Lima, G.E. Marques, V. Lopez-Richard, Phys. Rev. B 95(20), 205409 (2017)

    Article  ADS  Google Scholar 

  83. R. Winkler, Spin-Orbit Coupling Effects in Two-dimensional Electron and Hole Systems (Springer, Berlin, 2003)

    Book  Google Scholar 

  84. I. Vurgaftman, J. Meyer, L. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  85. F. Meier, B.P. Zakharchenya, Optical Orientation (Modern Problems in Condensed Matter Sciences) (Elsevier, Amsterdam, 1984)

    Google Scholar 

  86. J.D. Eshelby, Proc. R. Soc. Lond. A 241(1226), 376 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  87. A.D. Andreev, J.R. Downes, D.A. Faux, E.P. O’Reilly, J. Appl. Phys. 86(1), 297 (1999)

    Article  ADS  Google Scholar 

  88. A. Cros, N. Garro, J.M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, B. Daudin, Phys. Rev. B 73(11), 115313 (2006)

    Article  ADS  Google Scholar 

  89. N. Garro, A. Cros, J.M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Sarigiannidou, E. Monroy, B. Daudin, Phys. Rev. B 74(7), 075305 (2006)

    Article  ADS  Google Scholar 

  90. D. Jalabert, J. Coraux, H. Renevier, B. Daudin, M.H. Cho, K.B. Chung, D.W. Moon, J.M. Llorens, N. Garro, A. Cros, A. García-Cristóbal, Phys. Rev. B 72(11), 115301 (2005)

    Article  ADS  Google Scholar 

  91. H.R. Trebin, U. Rössler, R. Ranvaud, Phys. Rev. B 20(2), 686 (1979)

    Article  ADS  Google Scholar 

  92. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, Heidelberg, 2003)

    Book  Google Scholar 

  93. M. Tadić, F.M. Peeters, K.L. Janssens, Phys. Rev. B 65(16), 165333 (2002)

    Article  ADS  Google Scholar 

  94. M. Tadić, F.M. Peeters, Phys. Rev. B 71(12), 125342 (2005)

    Article  ADS  Google Scholar 

  95. J.M. Llorens Montolio, Estructura electrónica y propiedades ópticas de puntos cuánticos auto-organizados. Ph.D. thesis, Institut de Ciéncia dels Materials, Universitat de Valéncia, 2007

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from EURAMET European agency through grant EMPIR-17FUN06/f02, from Spanish MINEICO grants TEC2015-72009-EXP, TEC2015-64189-C3-2-R, MAT2016-77491-C2-1-R, EUIN2017-88844, from Comunidad de Madrid grant S2013/MAE-2780, and from CSIC grant I-COOP-2017-COOPB20320. Support from Brazilian agencies is also acknowledged through FAPESP grant 2014/02112-3 and CNPq grant 306414/2015-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benito Alén .

Editor information

Editors and Affiliations

Appendix: Axially-Symmetric Model Details

Appendix: Axially-Symmetric Model Details

For the sake of simplicity, the SRL model presented in the Sect. 3.3 has been slightly modified to discuss magnetic field induced effects within the \(\mathbf {k}\cdot \mathbf {p}\) formalism. Instead of a continuous layer conformal to the QD, we have consider an overlayer of finite extension. The number of geometrical parameters hence reduces to six as can be seen in Fig. 3.17. This approximation simplifies the strain calculation, as border effects on the overlayer are avoided. There is no impact on the results from a qualitative point of view, since, as we will show below, the hole wavefunction localizes either in the surroundings of the QD or in its interior. The material band parameters are extracted from [84]. The parameters used to describe the spin Zeeman effect are shown in Table 3.1. The values of the compounds GaInAs and GaAsSb are obtained through linear interpolation when no bowing parameters is reported.

Fig. 3.17
figure 17

Depiction of the geometrical model to describe a QD of radius \(R_\text {QD}\) and height \(h_\text {QD}\), a SRL of thickness \(t_\text {SRL}\) and a wetting-layer of thickness \(d_\text {WL}\) embedded in hard-wall cylinder of radius \(\mathcal {R}\) and height \(\mathcal {Z}\)

Table 3.1 Parameters related with the spin Zeeman effect. The values of GaAs and InAs are taken from [83] (p. 221) and those of GaSb from [85] (pp. 486 and 491)

In the implementation of the model we have adopted a further approximation, only the band edges are consider to the be discontinuous across the nanostructure interfaces. The motivation is two-fold. In first place we preserve the Hermiticity of the Hamiltonian avoiding the problem of the operator symmetrization. In second place, we simplify the calculation of the Hamiltonian matrix elements, which can be computed just once significantly speeding up the construction of the Hamiltonian. Such an approximation is justified for QDs exhibiting a type-I alignment, as the wavefunction is strongly localized in a homogeneous domain, inside of the nanostructure. However, our system could exhibit either type-I or type-II band alignment, meaning that in the latter case either the conduction and valence band states will be hosted by different materials. To solve that issue, we decided to decouple both bands which implies to nullify the Kane parameter. Hence the holes states will be described by a \(6 \times 6\) Hamiltonian and the electron states by a \(2 \times 2\) Hamiltonian. As most of the phenomenology observed in the experiments is associated to the properties of the hole states, we consider this approximation as safe in the context of the current study.

The strain field is calculated as if the semiconductor material were elastically isotropic. The procedure is based on the Eshelby’s inclusions method [86]. The lattice mismatch between the quantum dot and overlayer with respect to the GaAs matrix can be computed independently because of the linearity of elasticity equations. Analytical and compact expressions are obtained for the Fourier transform of the strain tensor [87]. In the past, we successfully used this method to explain Raman [88, 89] and middle energy ion scattering [90] experiments.

The basic equations of the \(\mathbf {k}\cdot \mathbf {p}\) method are very compact. However, when many bands are considered to be in interaction a broad set of choices in terms of notation and basis expansion appears. To maintain the consistency in the development of the model, we follow the derivation of Trebin et al. [91, 92]. The final Hamiltonian results of adding the \(\mathbf {k}\cdot \mathbf {p}\), the strain interactions (Bir-Pikus Hamiltonian) and the magnetic interactions:

$$\begin{aligned} H=H_{\mathbf {k}\cdot \mathbf {p}} + H_\varepsilon + H_B. \end{aligned}$$
(3.12)

We have neglected the linear \(k_i\) terms in the valence-valence interaction, the quadratic \(k_ik_j\) and \(\varepsilon _{ij}\) terms in the conduction-valence interaction and the \({k_i}{\varepsilon _{jk}}\) in the strain-induced interactions. The solution of the Schrödinger-like equation is obtained by expanding the envelope: wavefunction of (3.2) in the eigenfunctions of a hard-wall cylinder:

$$\begin{aligned} \mathcal {F}^{(M)}_{m,k} = \sum _{\alpha ,\mu } \mathcal {N}^{(m)}_\alpha J_m\left( k_\alpha ^{(m)}\rho /\mathcal {R}\right) \sqrt{2/\mathcal {Z}} \sin \left[ \mu \pi \left( z/\mathcal {Z} - 1/2\right) \right] , \end{aligned}$$
(3.13)

where \(J_m(x)\) is the Bessel function of order m, \(k_\alpha ^{(m)}\) is its zero number \(\alpha =1,2,\ldots \), \(\mu =1,2,\ldots \), \(\mathcal {R}\) and \(\mathcal {Z}\) are the radius and height of the expansion cylinder and

$$\begin{aligned} N_\alpha ^{(m)}=\frac{\sqrt{2}}{\mathcal {R}\left| J_{m+1} \left( k_\alpha ^{(m)}\right) \right| } \end{aligned}$$
(3.14)

is the normalization of the radial part. This definitions ensure the orthonormality of the expansion basis. By writing the Hamiltonian (3.12) in the associated representation, the electron and hole states are obtained after solving the eigenvalue problem. A similar procedure was followed in  [93, 94]. Further details can be found in [95].

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Llorens, J.M., Lopes-Oliveira, V., López-Richard, V., Ulloa, J.M., Alén, B. (2018). From Dot to Ring: Tunable Exciton Topology in Type-II InAs/GaAsSb Quantum Dots. In: Fomin, V. (eds) Physics of Quantum Rings. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-95159-1_3

Download citation

Publish with us

Policies and ethics