Skip to main content

Bacterial Identification Based on Universal Gene Amplification and Sequencing

  • Chapter
  • First Online:
  • 1739 Accesses

Abstract

Accurate identification of bacterial isolates is one of the fundamental tasks in clinical microbiology laboratories. As a result of the widespread use of PCR and DNA sequencing in the last two decades, amplification and sequencing of universal gene targets represent an advanced technology that can yield reproducible and unambiguous identification even for rare or slow-growing bacteria within 1 or 2 days. Among the various studied gene targets, 16S rDNA gene has been the most widely used, having played a pivotal role in identification of bacteria in clinical microbiology and reference laboratories. Apart from bacterial identification, the use of 16S rDNA gene sequencing has also led to the discovery of a large diversity of previously undescribed, novel bacterial species. Although 16S rDNA gene sequencing can achieve high discriminative power in identifying many groups of bacteria to species level, there are “blind spots” within some major genera. In these circumstances, alternative targets (e.g., groEL, rpoB, dnaJ), usually based on highly conserved proteins, are used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 2008;14:908–34.

    Article  CAS  PubMed  Google Scholar 

  2. Woo PC, Tam DM, Leung KW, et al. Streptococcus sinensis sp. nov., a novel Species Isolated from a patient with Infective endocarditis. J Clin Microbiol. 2002;40:805–10.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Woo PC, Teng JL, Leung KW, et al. Streptococcus sinensis may react with Lancefield group F antiserum. J Med Microbiol. 2004;53:1083–8.

    Article  CAS  PubMed  Google Scholar 

  4. Woo PC, Teng JL, Lau SK, Yuen KY. Clinical, phenotypic, and genotypic evidence for Streptococcus sinensis as the common ancestor of anginosus and mitis groups of streptococci. Med Hypotheses. 2006;66:345–51.

    Article  PubMed  Google Scholar 

  5. Uçkay I, Rohner P, Bolivar I, et al. Streptococcus sinensis endocarditis outside Hong Kong. Emerg Infect Dis. 2007;13:1250–2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Faibis F, Mihaila L, Perna S, et al. Streptococcus sinensis: an emerging agent of infective endocarditis. J Med Microbiol. 2008;57:528–31.

    Article  CAS  PubMed  Google Scholar 

  7. Yuen KY, Woo PC, Teng JL, Leung KW, Wong MKM, Lau SK. Laribacter hongkongensis gen. nov., sp. nov., a novel Gram-negative bacterium isolated from a cirrhotic patient with bacteremia and empyema. J Clin Microbiol. 2001;39:4227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woo PC, Kuhnert P, Burnens AP, et al. Laribacter hongkongensis: a potential cause of infectious diarrhea. Diagn Microbiol Infect Dis. 2003;47:551–6.

    Article  PubMed  Google Scholar 

  9. Lau SK, Woo PC, Hui WT, et al. Use of cefoperazone MacConkey agar for selective isolation of Laribacter hongkongensis. J Clin Microbiol. 2003;41:4839–41.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Woo PC, Lau SK, Teng JL, et al. Association of Laribacter hongkongensis in community acquired gastroenteritis with travel and eating fish: a multicentre case-control study. Lancet. 2004;363:1941–7.

    Article  PubMed  Google Scholar 

  11. Teng JL, Woo PC, Ma SS, et al. Ecoepidemiology of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis. J Clin Microbiol. 2005;43:919–22.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Woo PC, Lau SK, Teng JL, Yuen KY. Current status and future directions for Laribacter hongkongensis, a novel bacterium associated with gastroenteritis and travellerʼs diarrhoea. Curr Opin Infect Dis. 2005;18:413–9.

    Article  PubMed  Google Scholar 

  13. Lau SK, Woo PC, Fan RY, Lee RC, Teng JL, Yuen KY. Seasonal and tissue distribution of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis, in retail freshwater fish in Hong Kong. Int J Food Microbiol. 2007;113:62–6.

    Article  PubMed  Google Scholar 

  14. Ni XP, Ren SH, Sun JR, et al. Laribacter hongkongensis isolated from a patient with community-acquired gastroenteritis in Hangzhou City. J Clin Microbiol. 2006;45:255–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lau SK, Woo PC, Fan RY, et al. Isolation of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis, from drinking water reservoirs in Hong Kong. J Appl Microbiol. 2007;103:507–15.

    Article  CAS  PubMed  Google Scholar 

  16. Steer T, Collins MD, Gibson GR, Hippe H, Lawson PA. Clostridium hathewayi sp. nov., from human faeces. Syst Appl Microbiol. 2001;24:353–7.

    Article  CAS  PubMed  Google Scholar 

  17. Elsayed S, Zhang K. Human infection caused by Clostridium hathewayi. Emerg Infect Dis. 2004;10:1950–2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Woo PC, Lau SK, Woo GK, Fung AM, Yiu VP, Yuen KY. Bacteremia due to Clostridium hathewayi in a patient with acute appendicitis. J Clin Microbiol. 2004;42:5947–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Linscott AJ, Flamholtz RB, Shukla D, Song Y, Liu C, Finegold SM. Fatal septicemia due to Clostridium hathewayi and Campylobacter hominis. Anaerobe. 2005;11:97–8.

    Article  PubMed  Google Scholar 

  20. Richter D, Schlee DB, Allgower R, Matuschka FR. Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp. nov., with its hosts in Central Europe. Appl Environ Microbiol. 2004;70:6414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Woo PC, Poon RW, Foo CH, To KK, Lau SK. First report of Laribacter hongkongensis peritonitis in continuous ambulatory peritoneal dialysis. Perit Dial Int. 2016;36:105–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tse CW, Curreem SO, Cheung I, et al. A novel MLST sequence type discovered in the first fatal case of Laribacter hongkongensis bacteremia clusters with the sequence types of other human isolates. Emerg Microbes Infect. 2014;3:e41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teng JL, Huang Y, Tse H, et al. Phylogenomic and MALDI-TOF MS analysis of Streptococcus sinensis HKU4T reveals a distinct phylogenetic clade in the genus Streptococcus. Genome Biol Evol. 2014;6:2930–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Zhu J, Liu Z, et al. Multi-locus sequence typing of Laribacter hongkongensis isolates from freshwater animals, environment and diarrhea patients in Southern China. Int J Food Microbiol. 2017;245:98–104.

    Article  CAS  PubMed  Google Scholar 

  25. Kong HK, Law HW, Liu X, et al. Transcriptomic analysis of Laribacter hongkongensis reveals adaptive response coupled with temperature. PLoS ONE. 2017;12:e0169998.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xiong L, Yang Y, Ye YN, et al. Laribacter hongkongensis anaerobic adaptation mediated by arginine metabolism is controlled by the cooperation of FNR and ArgR. Environ Microbiol. 2017;19:1266–80.

    Article  CAS  PubMed  Google Scholar 

  27. Kong Q, Sun J, Shen L, et al. Investigation on the effect of the ecological parameters on the prevalence of Laribacter hongkongensis in freshwater fish and in human. Indian J Med Microbiol. 2016;34:110–1.

    Article  CAS  PubMed  Google Scholar 

  28. Xie J, He JB, Shi JW, Xiao Q, Li L, Woo PC. An adult zebrafish model for Laribacter hongkongensis infection: Koch’s postulates fulfilled. Emerg Microbes Infect. 2014;3:e73.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xiong L, Teng JL, Watt RM, Liu C, Lau SK, Woo PC. Molecular characterization of arginine deiminase pathway in Laribacter hongkongensis and unique regulation of arginine catabolism and anabolism by multiple environmental stresses. Environ Microbiol. 2015;17:4469–83.

    Article  CAS  PubMed  Google Scholar 

  30. Beilfuss HA, Quig D, Block MA, Schreckenberger PC. Definitive identification of Laribacter hongkongensis acquired in the United States. J Clin Microbiol. 2015;53:2385–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Raja KM, Ghosh AR. Molecular insight of putative pathogenicity markers with ESBL genes and lipopolysaccharide in Laribacter hongkongensis. Appl Biochem Biotechnol. 2014;174:1935–44.

    Article  CAS  PubMed  Google Scholar 

  32. Xiong L, Teng JL, Watt RM, Kan B, Lau SK, Woo PC. Arginine deiminase pathway is far more important than urease for acid resistance and intracellular survival in Laribacter hongkongensis: a possible result of arc gene cassette duplication. BMC Microbiol. 2014;14:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Raja MK, Ghosh AR. Laribacter hongkongensis: an emerging pathogen of infectious diarrhea. Folia Microbiol (Praha). 2014;59:341–7.

    Article  CAS  Google Scholar 

  34. Chen DQ, Yang L, Luo YT, Mao MJ, Lin YP, Wu AW. Prevalence and characterization of quinolone resistance in Laribacter hongkongensis from grass carp and Chinese tiger frog. J Med Microbiol. 2013;62:1559–64.

    Article  CAS  PubMed  Google Scholar 

  35. Raja MK, Lulu SS, Ghosh AR. A novel pathogen for gastroenteritis: Laribacter hongkongensis. Indian J Med Microbiol. 2013;31:204.

    Article  CAS  PubMed  Google Scholar 

  36. Tang BS, Lau SK, Teng JL, et al. Matrix-assisted laser desorption ionisation-time of flight mass spectrometry for rapid identification of Laribacter hongkongensis. J Clin Pathol. 2013;66:1081–3.

    Article  CAS  PubMed  Google Scholar 

  37. Feng JL, Lin JY, Jiang XB, et al. Development of an ERIC sequence typing scheme for Laribacter hongkongensis, an emerging pathogen associated with community-acquired gastroenteritis and travellers’ diarrhoea. J Med Microbiol. 2013;62:701–7.

    Article  CAS  PubMed  Google Scholar 

  38. Feng JL, Hu J, Lin JY, et al. The prevalence, antimicrobial resistance and PFGE profiles of Laribacter hongkongensis in retail freshwater fish and edible frogs of Southern China. Food Microbiol. 2012;32:118–23.

    Article  CAS  PubMed  Google Scholar 

  39. Randazzo A, Kornreich A, Lissoir B. A Clostridium hathewayi isolate in blood culture of a patient with an acute appendicitis. Anaerobe. 2015;35:44–7.

    Article  PubMed  Google Scholar 

  40. Dababneh AS, Nagpal A, Palraj BR, Sohail MR. Clostridium hathewayi bacteraemia and surgical site infection after uterine myomectomy. BMJ Case Rep. 2014 Mar 4;2014. pii: bcr2013009322.

    Google Scholar 

  41. Schutzer SE, Fraser-Liggett CM, Qiu WG, et al. Whole-genome sequences of Borrelia bissettii, Borrelia valaisiana, and Borrelia spielmanii. J Bacteriol. 2012;194:545–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Calderaro A, Gorrini C, Piccolo G, et al. Identification of Borrelia species after creation of an in-house MALDI-TOF MS database. PLoS ONE. 2014;9:e88895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Fox GE, Magrum LJ, Balch WE, Wolfe RS, Woese CR. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci. 1977;74:4537–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta R, Lanter JM, Woese CR. Sequence of the 16S Ribosomal RNA from Halobacterium volcanii, an Archaebacterium. Science. 1983;221:656–9.

    Article  CAS  PubMed  Google Scholar 

  45. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci. 1990;87:4576–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Snel B, Bork P, Huynen MA. Genome phylogeny based on gene content. Nat Genet. 1999;21:108–10.

    Article  CAS  PubMed  Google Scholar 

  47. Qian Q, Tang YW, Kolbert CP, et al. Direct identification of bacteria from positive blood cultures by amplification and sequencing of the 16S rRNA gene: evaluation of BACTEC 9240 instrument true-positive and false-positive results. J Clin Microbiol. 2001;39:3578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li H, Turhan V, Chokhani L, Stratton CW, Dunbar SA, Tang YW. Identification and differentiation of clinically relevant Mycobacterium species directly from acid-fast bacillus-positive culture broth. J Clin Microbiol. 2009;47:3814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang YW. Duplex PCR assay simultaneously detecting and differentiating Bartonella quintana, B. henselae, and Coxiella burnetii in surgical heart valve specimens. J Clin Microbiol. 2009;47:2647–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hall L, Doerr KA, Wohlfiel SL, Roberts GD. Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol. 2003;41:1447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bosshard PP, Abels S, Zbinden R, Bottger EC, Altwegg M. Ribosomal DNA sequencing for identification of aerobic gram-positive rods in the clinical laboratory (an 18-month evaluation). J Clin Microbiol. 2003;41:4134–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bosshard PP, Abels S, Altwegg M, Bottger EC, Zbinden R. Comparison of conventional and molecular methods for identification of aerobic catalase-negative Gram-positive cocci in the clinical laboratory. J Clin Microbiol. 2004;42:2065–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song Y, Liu C, Bolanos M, Lee J, McTeague M, Finegold SM. Evaluation of 16S rRNA sequencing and reevaluation of a short biochemical scheme for identification of clinically significant bacteroides species. J Clin Microbiol. 2005;43:1531–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heikens E, Fleer A, Paauw A, Florijn A, Fluit AC. Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol. 2005;43:2286–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lau SK, Ng KH, Woo PC, et al. Usefulness of the MicroSeq 500 16S rDNA bacterial identification system for identification of anaerobic gram positive bacilli isolated from blood cultures. J Clin Pathol. 2006;59:219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bosshard PP, Zbinden R, Abels S, Boddinghaus B, Altwegg M, Bottger EC. 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting gram-negative bacteria in the clinical laboratory. J Clin Microbiol. 2006;44:1359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lau SK, Woo PC, Woo GK, et al. Eggerthella hongkongensis sp. nov. and Eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. Diagn Microbiol Infect Dis. 2004;49:255–63.

    Article  PubMed  Google Scholar 

  58. Lau SK, Woo PC, Fung AM, Chan KM, Woo GK, Yuen KY. Anaerobic, non-sporulating, Gram-positive bacilli bacteraemia characterized by 16S rRNA gene sequencing. J Med Microbiol. 2004;53:1247–53.

    Article  CAS  PubMed  Google Scholar 

  59. Bosshard PP, Altwegg M, Zbinden R. Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. Int J Syst Evol Microbiol. 2002;52:1263–6.

    CAS  PubMed  Google Scholar 

  60. Woo PC, Lau SK, Chan KM, Fung AM, Tang BS, Yuen KY. Clostridium bacteraemia characterised by 16S ribosomal RNA gene sequencing. J Clin Pathol. 2005;58:301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lau SK, McNabb A, Woo GK, et al. Catabacter hongkongensis gen. nov., sp. nov., isolated from blood cultures of patients from Hong Kong and Canada. J Clin Microbiol. 2006;45:395–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wurdemann D, Tindall BJ, Pukall R, et al. Gordonibacter pamelaeae gen. nov., sp. nov., a new member of the Coriobacteriaceae isolated from a patient with Crohn’s disease, and reclassification of Eggerthella hongkongensis Lau et al. 2006 as Paraeggerthella hongkongensis gen. nov., comb. nov. Int J Syst Evol Microbiol. 2009;59:1405–15.

    Article  PubMed  CAS  Google Scholar 

  63. Colmegna I, Rodriguez-Barradas M, Young EJ, Rauch R, Clarridge J. Disseminated Actinomyces meyeri infection resembling lung cancer with brain metastases. Am J Med Sci. 2003;326:152–5.

    Article  PubMed  Google Scholar 

  64. Woo PC, Fung AM, Lau SK, Yuen KY. Identification by 16S rRNA gene sequencing of Lactobacillus salivarius bacteremic cholecystitis. J Clin Microbiol. 2002;40:265–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Woo PC, Fung AM, Lau SK, Hon E, Yuen KY. Diagnosis of pelvic actinomycosis by 16S ribosomal RNA gene sequencing and its clinical significance. Diagn Microbiol Infect Dis. 2002;43:113–8.

    Article  CAS  PubMed  Google Scholar 

  66. Woo PC, Fung AM, Lau SK, Wong SSY, Yuen KY. Group G beta-hemolytic streptococcal bacteremia characterized by 16S ribosomal RNA gene sequencing. J Clin Microbiol. 2001;39:3147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lam MM, Clarridge JE, Young EJ, Mizuki S. The other group G Streptococcus: increased detection of Streptococcus canis ulcer infections in dog owners. J Clin Microbiol. 2007;45:2327–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Woo PC, Tse H, Chan KM, et al. “Streptococcus milleri” endocarditis caused by Streptococcus anginosus. Diagn Microbiol Infect Dis. 2004;48:81–8.

    Article  PubMed  Google Scholar 

  69. Woo PC, Tam DM, Lau SK, Fung AM, Yuen KY. Enterococcus cecorum empyema thoracis successfully treated with cefotaxime. J Clin Microbiol. 2004;42:919–22.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lau SK, Chow WN, Foo CH, et al. Elizabethkingia anophelis bacteremia is associated with clinically significant infections and high mortality. Sci Rep. 2016;6:26045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Somers CJ, Millar BC, Xu J, et al. Haemophilus segnis: a rare cause of endocarditis. Clin Microbiol Infect. 2003;9:1048–50.

    Article  CAS  PubMed  Google Scholar 

  72. Lau SK, Woo PC, Mok MY, et al. Characterization of Haemophilus segnis, an important cause of bacteremia, by 16S rRNA gene sequencing. J Clin Microbiol. 2004;42:877–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lau SK, Fung AM, Woo PC, Yuen KY, Chan BYL, Que TL. Haemophilus segnis polymicrobial and monomicrobial bacteraemia identified by 16S ribosomal RNA gene sequencing. J Med Microbiol. 2002;51:635–40.

    Article  CAS  PubMed  Google Scholar 

  74. Mak GC, Ho PL, Tse CWS, Lau SK, Wong SSY. Reduced levofloxacin susceptibility and tetracycline resistance in a clinical isolate of Haemophilus quentini identified by 16S rRNA sequencing. J Clin Microbiol. 2005;43:5391–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tang YW, Ellis NM, Hopkins MK, Smith DH, Dodge DE, Persing DH. Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic Gram-negative bacilli. J Clin Microbiol. 1998;36:3674–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lam JYW, Wu AKL, Ngai DC, et al. Three cases of severe invasive infections caused by Campylobacter rectus and first report of fatal C. rectus infection. J Clin Microbiol. 2011;49:1687–91.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Woo PC, Leung PK, Leung KW, Yuen KY. Identification by 16S ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient. Mol Pathol. 2000;53:211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Woo PC, Cheung EY, Leung KW, Yuen KY. Identification by 16S ribosomal RNA gene sequencing of an Enterobacteriaceae species with ambiguous biochemical profile from a renal transplant recipient. Diagn Microbiol Infect Dis. 2001;39:85–93.

    Article  CAS  PubMed  Google Scholar 

  79. Woo PC, Fung AM, Wong SSY, Tsoi HW, Yuen KY. Isolation and characterization of a Salmonella enterica Serotype Typhi variant and its clinical and public health implications. J Clin Microbiol. 2001;39:1190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Clarridge JE 3rd, Raich TJ, Sjosted A, et al. Characterization of two unusual clinically significant Francisella strains. J Clin Microbiol. 1996;34:1995–2000.

    PubMed  PubMed Central  Google Scholar 

  81. Woo PC, Chong KT, Leung K, Que T, Yuen KY. Identification of Arcobacter cryaerophilus isolated from a traffic accident victim with bacteremia by 16S ribosomal RNA gene sequencing. Diagn Microbiol Infect Dis. 2001;40:125–7.

    Article  CAS  PubMed  Google Scholar 

  82. Lau SK, Woo PC, Teng JL, Leung KW, Yuen KY. Identification by 16S ribosomal RNA gene sequencing of Arcobacter butzleri bacteraemia in a patient with acute gangrenous appendicitis. Mol Pathol. 2002;55:182–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lau SK, Woo PC, Woo GK, Yuen KY. Catheter-related Microbacterium bacteremia identified by 16S rRNA gene sequencing. J Clin Microbiol. 2002;40:2681–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Elshibly S, Xu J, McClurg RB, et al. Central line-related bacteremia due to Roseomonas mucosain a patient with diffuse large B-cell non-Hodgkin’s lymphoma. Leuk Lymphoma. 2005;46:611–4.

    Article  PubMed  Google Scholar 

  85. Woo PC, Fung AM, Lau SK, et al. Granulicatella adiacens and Abiotrophia defectiva bacteraemia characterized by 16S rRNA gene sequencing. J Med Microbiol. 2003;52:137–40.

    Article  CAS  PubMed  Google Scholar 

  86. Woo PC, Lau SK, Fung AM, Chiu SK, Yung RW, Yuen KY. Gemella bacteraemia characterised by 16S ribosomal RNA gene sequencing. J Clin Pathol. 2003;56:690–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Woo PC, Tse H, Wong SSY, et al. Life-threatening invasive Helcococcus kunzii infections in intravenous-drug users and ermA-mediated erythromycin resistance. J Clin Microbiol. 2005;43:6205–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lau SK, Woo PC, Woo GK, et al. Bacteraemia caused by Anaerotruncus colihominis and emended description of the species. J Clin Pathol. 2006;59:748–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lau SK, Woo PC, Li NK, et al. Globicatella bacteraemia identified by 16S ribosomal RNA gene sequencing. J Clin Pathol. 2006;59:303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lau SK, Teng JL, Leung KW, et al. Bacteremia caused by Solobacterium moorei in a patient with acute proctitis and carcinoma of the cervix. J Clin Microbiol. 2006;44:3031–4.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Woo PC, Lau SK, Lin AW, Curreem SO, Fung AM, Yuen KY. Surgical site abscess caused by Lactobacillus fermentum identified by 16S ribosomal RNA gene sequencing. Diagn Microbiol Infect Dis. 2007;58:251–4.

    Article  CAS  PubMed  Google Scholar 

  92. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol. 2000;38:3623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mignard S, Flandrois JP. 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J Microbiol Methods. 2006;67:574–81.

    Article  CAS  PubMed  Google Scholar 

  94. Woo PC, Ng KH, Lau SK, et al. Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. J Clin Microbiol. 2003;41:1996–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lau SK, Woo PC, Tse H, Leung KW, Wong SSY, Yuen KY. Invasive Streptococcus iniae infections outside North America. J Clin Microbiol. 2003;41:1004–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Koh TH, Kurup A, Chen J. Streptococcus iniae discitis in Singapore. Emerg Infect Dis. 2004;10:1694–6.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lau SK, Woo PC, Luk WK, et al. Clinical isolates of Streptococcus iniae from Asia are more mucoid and β-hemolytic than those from North America. Diagn Microbiol Infect Dis. 2006;54:177–81.

    Article  CAS  PubMed  Google Scholar 

  98. Sun JR, Yan JC, Yeh CY, Lee SY, Lu JJ. Invasive infection with Streptococcus iniae in Taiwan. J Med Microbiol. 2007;56:1246–9.

    Article  PubMed  Google Scholar 

  99. Weinstein MR, Litt M, Kertesz DA, et al. Invasive infections due to a fish pathogen, Streptococcus iniae. N Engl J Med. 1997;337:589–94.

    Article  CAS  PubMed  Google Scholar 

  100. Woo PC, Ngan AHY, Lau SK, Yuen KY. Tsukamurella conjunctivitis: a novel clinical syndrome. J Clin Microbiol. 2003;41:3368–71.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Woo PC, Fong AHC, Ngan AHY, et al. First report of Tsukamurella keratitis: association between T. tyrosinosolvens and T. pulmonis and ophthalmologic infections. J Clin Microbiol. 2009;47:1953–6.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Teng JL, Tang Y, Wong SS, et al. Tsukamurella hongkongensis sp. nov. and Tsukamurella sinensis sp. nov., isolated from patients with keratitis, catheter-related bacteraemia and conjunctivitis. Int J Syst Evol Microbiol. 2016;66:391–7.

    Article  CAS  PubMed  Google Scholar 

  103. Lau SK, Woo PC, Yim TC, To APC, Yuen KY. Molecular characterization of a strain of Group A streptococcus isolated from a patient with a psoas abscess. J Clin Microbiol. 2003;41:4888–91.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chen PL, Lee NY, Yan JJ, et al. Prosthetic valve endocarditis caused by Streptobacillus moniliformis: a case of rat bite fever. J Clin Microbiol. 2007;45:3125–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Woo PC, Tsoi HW, Yuen KY, Teng JL, Leung KW, Wong SSY. Thermo-tolerant Campylobacter fetus bacteraemia identified by 16S ribosomal RNA gene sequencing: an emerging pathogen in immunocompromised patients. J Med Microbiol. 2002;51:740–6.

    Article  CAS  PubMed  Google Scholar 

  106. Woo PC, Woo GK, Lau SK, Wong SS, Yuen K. Single gene target bacterial identification. groEL gene sequencing for discriminating clinical isolates of Burkholderia pseudomallei and Burkholderia thailandensis. Diagn Microbiol Infect Dis. 2002;44:143–9.

    Article  CAS  PubMed  Google Scholar 

  107. Woo PC, Teng JL, Lau SK, et al. Analysis of a viridans group strain reveals a case of bacteremia due to Lancefield group G alpha-hemolytic Streptococcus dysgalactiae subsp. equisimilis in a patient with pyomyositis and reactive arthritis. J Clin Microbiol. 2003;41:613–8.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Woo PC, Leung AS, Leung KW, Yuen KY. Identification of slide coagulase positive, tube coagulase negative Staphylococcus aureus by 16S ribosomal RNA gene sequencing. Mol Pathol. 2001;54:244–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Woo PC, Tsoi HW, Leung KW, et al. Identification of Mycobacterium neoaurum isolated from a neutropenic patient with catheter-related bacteremia by 16S rRNA sequencing. J Clin Microbiol. 2000;38:3515–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lefèvre P, Gilot P, Godiscal H, Content J, Fauville-Dufaux M. Mycobacterium intracellulare as a cause of a recurrent granulomatous tenosynovitis of the hand. Diagn Microbiol Infect Dis. 2000;38:127–9.

    Article  PubMed  Google Scholar 

  111. Heller R, Jaulhac B, Charles P, et al. Identification of Mycobacterium shimoidei in a tuberculosis-like cavity by 16S ribosomal DNA direct sequencing. Eur J Clin Microbiol Infect Dis. 1996;15:172–5.

    Article  CAS  PubMed  Google Scholar 

  112. Woo PC, Li JH, Tang WM, Yuen KY. Acupuncture mycobacteriosis. N Engl J Med. 2001;345:842–3.

    Article  CAS  PubMed  Google Scholar 

  113. Woo PC, Leung KW, Wong SSY, Chong KTK, Cheung EYL, Yuen KY. Relatively alcohol-resistant mycobacteria are emerging pathogens in patients receiving acupuncture treatment. J Clin Microbiol. 2002;40:1219–24.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kurabachew M, Wondimu A, Ryon JJ. Reverse transcription-PCR detection of Mycobacterium leprae in clinical specimens. J Clin Microbiol. 1998;36:1352–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Phetsuksiri B, Rudeeaneksin J, Supapkul P, Wachapong S, Mahotarn K, Brennan PJ. A simplified reverse transcriptase PCR for rapid detection of Mycobacterium leprae in skin specimens. FEMS Immunol Med Microbiol. 2006;48:319–28.

    Article  CAS  PubMed  Google Scholar 

  116. Wilson KH, Frothingham R, Wilson JAP, Blitchington R. Phylogeny of the Whipple’s-disease-associated bacterium. Lancet. 1991;338:474–5.

    Article  CAS  PubMed  Google Scholar 

  117. Relman DA, Schmidt TM, MacDermott RP, Falkow S. Identification of the uncultured bacillus of Whipple’s Disease. N Engl J Med. 1992;327:293–301.

    Article  CAS  PubMed  Google Scholar 

  118. Fenollar F, Raoult D. Molecular techniques in Whipple’s disease. Expert Rev Mol Diagn. 2001;1:299–309.

    Article  CAS  PubMed  Google Scholar 

  119. Fenollar F, Fournier PE, Raoult D, Gerolami R, Lepidi H, Poyart C. Quantitative detection of Tropheryma whipplei DNA by real-time PCR. J Clin Microbiol. 2002;40:1119–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fenollar F, Fournier PE, Robert C, Raoult D. Use of genome selected repeated sequences increases the sensitivity of PCR detection of Tropheryma whipplei. J Clin Microbiol. 2004;42:401–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Relman DA, Loutit JS, Schmidt TM, Falkow S, Tompkins LS. The agent of bacillary angiomatosis. An approach to the identification of uncultured pathogens. N Engl J Med. 1990;323:1573–80.

    Article  CAS  PubMed  Google Scholar 

  122. Regnery RL, Anderson BE, Clarridge JE 3rd, Rodriguez-Barradas MC, Jones DC, Carr JH. Characterization of a novel Rochalimaea species, R. henselae sp. nov., isolated from blood of a febrile, human immunodeficiency virus-positive patient. J Clin Microbiol. 1992;30:265–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Maeda K, Markowitz N, Hawley RC, Ristic M, Cox D, McDade JE. Human infection with Ehrlichia canis, a leukocytic rickettsia. N Engl J Med. 1987;316:853–6.

    Article  CAS  PubMed  Google Scholar 

  124. Anderson BE, Dawson JE, Jones DC, Wilson KH. Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J Clin Microbiol. 1991;29:2838–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen SM, Dumler JS, Bakken JS, Walker DH. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J Clin Microbiol. 1994;32:589–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kupferwasser LI, Darius H, Müller AM, et al. Diagnosis of culture-negative endocarditis: the role of the Duke criteria and the impact of transesophageal echocardiography. Am Heart J. 2001;142:146–52.

    Article  CAS  PubMed  Google Scholar 

  127. Cursons RTM, Jeyerajah E, Sleigh JW. The use of polymerase chain reaction to detect septicemia in critically ill patients. Crit Care Med. 1999;27:937–40.

    Article  CAS  PubMed  Google Scholar 

  128. Goldenberger D, Kunzli A, Vogt P, Zbinden R, Altwegg M. Molecular diagnosis of bacterial endocarditis by broad-range PCR amplification and direct sequencing. J Clin Microbiol. 1997;35:2733–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wilck MB, Wu Y, Howe JG, Crouch JY, Edberg SC. Endocarditis caused by culture-negative organisms visible by Brown and Brenn staining: utility of PCR and DNA sequencing for diagnosis. J Clin Microbiol. 2001;39:2025–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Millar B, Moore J, Mallon P, et al. Molecular diagnosis of infective endocarditis – a new Duke’s criterion. Scand J Infect Dis. 2001;33:673–80.

    Article  CAS  PubMed  Google Scholar 

  131. Gauduchon V, Chalabreysse L, Etienne J, et al. Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J Clin Microbiol. 2003;41:763–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Grijalva M. Molecular diagnosis of culture negative infective endocarditis: clinical validation in a group of surgically treated patients. Heart. 2003;89:263–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bosshard PP, Kronenberg A, Zbinden R, Ruef C, Bottger EC, Altwegg M. Etiologic diagnosis of infective endocarditis by broad-range polymerase chain reaction: a 3-year experience. Clin Infect Dis. 2003;37:167–72.

    Article  PubMed  Google Scholar 

  134. Lang S, Watkin RW, Lambert PA, Bonser RS, Littler WA, Elliott TS. Evaluation of PCR in the molecular diagnosis of endocarditis. J Infect. 2004;48:269–75.

    Article  CAS  PubMed  Google Scholar 

  135. Lang S, Watkin RW, Lambert PA, Littler WA, Elliott TSJ. Detection of bacterial DNA in cardiac vegetations by PCR after the completion of antimicrobial treatment for endocarditis. Clin Microbiol Infect. 2004;10:579–81.

    Article  CAS  PubMed  Google Scholar 

  136. Breitkopf C, Hammel D, Scheld HH, Peters G, Becker K. Impact of a molecular approach to improve the microbiological diagnosis of infective heart valve endocarditis. Circulation. 2005;111:1415–21.

    Article  CAS  PubMed  Google Scholar 

  137. Houpikian P, Raoult D. Blood culture-negative endocarditis in a reference center: etiologic diagnosis of 348 cases. Medicine (Baltimore). 2005;84:162–73.

    Article  Google Scholar 

  138. Kotilainen P, Heiro M, Jalava J, et al. Aetiological diagnosis of infective endocarditis by direct amplification of rRNA genes from surgically removed valve tissue. An 11-year experience in a Finnish teaching hospital. Ann Med. 2006;38:263–73.

    Article  CAS  PubMed  Google Scholar 

  139. Xu J, Millar BC, Moore JE, et al. Employment of broad-range 16S rRNA PCR to detect aetiological agents of infection from clinical specimens in patients with acute meningitis – rapid separation of 16S rRNA PCR amplicons without the need for cloning. J Appl Microbiol. 2003;94:197–206.

    Article  CAS  PubMed  Google Scholar 

  140. Schuurman T, de Boer RF, Kooistra-Smid AMD, van Zwet AA. Prospective study of use of PCR amplification and sequencing of 16S ribosomal DNA from cerebrospinal fluid for diagnosis of bacterial meningitis in a clinical setting. J Clin Microbiol. 2004;42:734–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xu J, Moore JE, Millar BC, Webb H, Shields MD, Goldsmith CE. Employment of broad range 16S rDNA PCR and sequencing in the detection of aetiological agents of meningitis. New Microbiol. 2005;28:135–43.

    CAS  PubMed  Google Scholar 

  142. Deutch S, Pedersen LN, Pødenphant L, et al. Broad-range real time PCR and DNA sequencing for the diagnosis of bacterial meningitis. Scand J Infect Dis. 2006;38:27–35.

    Article  CAS  PubMed  Google Scholar 

  143. Welinder-Olsson C, Dotevall L, Hogevik H, et al. Comparison of broad-range bacterial PCR and culture of cerebrospinal fluid for diagnosis of community-acquired bacterial meningitis. Clin Microbiol Infect. 2007;13:879–86.

    Article  CAS  PubMed  Google Scholar 

  144. Tsai JC, Teng LJ, Hsueh PR. Direct detection of bacterial pathogens in brain abscesses by polymerase chain reaction amplification and sequencing of partial 16S ribosomal deoxyribonucleic acid fragments. Neurosurgery. 2004;55:1154–62.

    Article  PubMed  Google Scholar 

  145. Knox CM, Cevellos V, Dean D. 16S ribosomal DNA typing for identification of pathogens in patients with bacterial keratitis. J Clin Microbiol. 1998;36:3492–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Domann E, Hong G, Imirzalioglu C, et al. Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. J Clin Microbiol. 2003;41:5500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Saglani S. Empyema: the use of broad range 16S rDNA PCR for pathogen detection. Arch Dis Child. 2005;90:70–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Le Monnier A, Carbonnelle E, Zahar JR, et al. Microbiological diagnosis of empyema in children: comparative evaluations by culture, polymerase chain reaction, and pneumococcal antigen detection in pleural fluids. Clin Infect Dis. 2006;42:1135–40.

    Article  PubMed  Google Scholar 

  149. Rosey AL, Abachin E, Quesnes G, et al. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children. J Microbiol Methods. 2007;68:88–93.

    Article  CAS  PubMed  Google Scholar 

  150. Fihman V, Hannouche D, Bousson V, et al. Improved diagnosis specificity in bone and joint infections using molecular techniques. J Infect. 2007;55:510–7.

    Article  CAS  PubMed  Google Scholar 

  151. Sleigh J, Cursons R, La Pine M. Detection of bacteraemia in critically ill patients using 16S rDNA polymerase chain reaction and DNA sequencing. Intensive Care Med. 2001;27:1269–73.

    Article  CAS  PubMed  Google Scholar 

  152. Xu J, Moore JE, Millar BC, et al. Improved laboratory diagnosis of bacterial and fungal infections in patients with hematological malignancies using PCR and ribosomal RNA sequence analysis. Leuk Lymphoma. 2004;45:1637–41.

    Article  CAS  PubMed  Google Scholar 

  153. Marín M, Muñoz P, Sánchez M, et al. Molecular diagnosis of infective endocarditis by real-time broad-range polymerase chain reaction (PCR) and sequencing directly from heart valve tissue. Medicine (Baltimore). 2007;86:195–202.

    Article  CAS  Google Scholar 

  154. Schabereiter-Gurtner C, Nehr M, Apfalter P, Makristathis A, Rotter ML, Hirschl AM. Evaluation of a protocol for molecular broad-range diagnosis of culture-negative bacterial infections in clinical routine diagnosis. J Appl Microbiol. 2008;104:1228–37.

    Article  CAS  PubMed  Google Scholar 

  155. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007;45:2761–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Roth A, Fischer M, Hamid ME, Michalke S, Ludwig W, Mauch H. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol. 1998;36:139–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ringuet H, Akoua-Koffi C, Honore S, et al. hsp65 sequencing for identification of rapidly growing mycobacteria. J Clin Microbiol. 1999;37:852–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kasai H, Ezaki T, Harayama S. Differentiation of phylogenetically related slowly growing mycobacteria by their gyrB sequences. J Clin Microbiol. 2000;38:301–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Adekambi T. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol. 2006;56:133–43.

    Article  CAS  PubMed  Google Scholar 

  160. Kwok AYC. Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences. Int J Syst Evol Microbiol. 2003;53:87–92.

    Article  CAS  PubMed  Google Scholar 

  161. Kwok AYC, Su SC, Reynolds RP, et al. Species identification and phylogenetic relationships based on partial hsp60 gene sequences within the genus Staphylococcus. Int J Syst Bacteriol. 1999;49:1181–92.

    Article  CAS  PubMed  Google Scholar 

  162. Woo PC, Lau SK, Woo GK, et al. Seronegative bacteremic melioidosis caused by Burkholderia pseudomallei with ambiguous biochemical profile: clinical importance of accurate identification by 16S rRNA gene and groEL gene sequencing. J Clin Microbiol. 2003;41:3973–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Goh SH, Potter S, Wood JO, Hemmingsen SM, Reynolds RP, Chow AW. HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol. 1996;34:818–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol. 1994;44:846–9.

    Article  CAS  Google Scholar 

  165. Palys T, Nakamura LK, Cohan FM. Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol. 1997;47:1145–56.

    Article  CAS  PubMed  Google Scholar 

  166. Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH. Manual of Clinical Microbiology. 8th ed. Washington, DC: American Society for Microbiology; 2003.

    Google Scholar 

  167. Woo PC, Chung LM, Teng JL, et al. In silico analysis of 16S ribosomal RNA gene sequencing-based methods for identification of medically important anaerobic bacteria. J Clin Pathol. 2007;60:576–9.

    Article  CAS  PubMed  Google Scholar 

  168. Teng JL, Yeung MY, Yue G, et al. In silico analysis of 16S rRNA gene sequencing based methods for identification of medically important aerobic Gram-negative bacteria. J Med Microbiol. 2011;60:1281–6.

    Article  CAS  PubMed  Google Scholar 

  169. Woo PC, Teng JL, Wu JKL, et al. Guidelines for interpretation of 16S rRNA gene sequence-based results for identification of medically important aerobic Gram-positive bacteria. J Med Microbiol. 2009;58:1030–6.

    Article  CAS  PubMed  Google Scholar 

  170. Maidak BL, Cole JR, Parker CT, et al. A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res. 1999;27:171–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Maidak BL. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 2000;28:173–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Maidak BL. The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 2001;29:173–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cole JR. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 2004;33:D294–6.

    Article  PubMed Central  CAS  Google Scholar 

  174. Cole JR, Chai B, Farris RJ, et al. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res. 2007;35:D169–72.

    Article  CAS  PubMed  Google Scholar 

  175. Patel JB, Leonard DG, Pan X, Musser JM, Berman RE, Nachamkin I. Sequence-based identification of Mycobacterium species using the MicroSeq 500 16S rDNA bacterial identification system. J Clin Microbiol. 2000;38:246–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Tang YW, Von Graevenitz A, Waddington MG, et al. Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis. J Clin Microbiol. 2000;38:1676–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Simmon KE, Croft AC, Petti CA. Application of SmartGene IDNS software to partial 16S rRNA gene sequences for a diverse group of bacteria in a clinical laboratory. J Clin Microbiol. 2006;44:4400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pruesse E, Quast C, Knittel K, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Woo PC, Teng JL, Yeung JMY, Tse H, Lau SK, Yuen KY. Automated identification of medically important bacteria by 16S rRNA gene sequencing using a novel comprehensive database, 16SpathDB. J Clin Microbiol. 2011;49:1799–809.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Murray PR, Baron EJ, Jorgensen JH, Louise MR, MA P. Manual of clinical microbiology. 9th ed. Washington, DC: American Society for Microbiology; 2007.

    Google Scholar 

  181. Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, DW W. Manual of vlinical microbiology. 10th ed. Washington, DC: American Society for Microbiology; 2011.

    Google Scholar 

  182. Teng JL, Ho TC, Yeung RS, et al. Evaluation of 16SpathDB 2.0, an automated 16S rRNA gene sequence database, using 689 complete bacterial genomes. Diagn Microbiol Infect Dis. 2014;78:105–15.

    Article  CAS  PubMed  Google Scholar 

  183. Turenne CY, Tschetter L, Wolfe J, Kabani A. Necessity of quality-controlled 16S rRNA gene sequence databases: identifying nontuberculous Mycobacterium species. J Clin Microbiol. 2001;39:3637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cloud JL, Neal H, Rosenberry R, et al. Identification of Mycobacterium spp. by using a commercial 16S ribosomal DNA sequencing kit and additional sequencing libraries. J Clin Microbiol. 2002;40:400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mellmann A, Cloud JL, Andrees S, et al. Evaluation of RIDOM, MicroSeq, and GenBank services in the molecular identification of Nocardia species. Int J Med Microbiol. 2003;293:359–70.

    Article  CAS  PubMed  Google Scholar 

  186. Cloud JL, Conville PS, Croft A, Harmsen D, Witebsky FG, Carroll KC. Evaluation of partial 16S ribosomal DNA sequencing for identification of nocardia species by using the MicroSeq 500 system with an expanded database. J Clin Microbiol. 2004;42:578–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Becker K, Harmsen D, Mellmann A, et al. Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J Clin Microbiol. 2004;42:4988–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Patel JB, Wallace RJ, Brown-Elliott BA, et al. Sequence-based identification of aerobic actinomycetes. J Clin Microbiol. 2004;42:2530–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Fontana C, Favaro M, Pelliccioni M, Pistoia ES, Favalli C. Use of the MicroSeq 500 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. J Clin Microbiol. 2005;43:615–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zeaiter Z, Raoult D, Fournier PE, Ogata H. Phylogenetic classification of Bartonella species by comparing groEL sequences. Int J Syst Evol Microbiol. 2002;52:165–71.

    Article  CAS  PubMed  Google Scholar 

  191. La Scola B, Gundi VAKB, Khamis A, Raoult D. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol. 2006;44:827–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Hong Nhung P, Ohkusu K, Mishima N, et al. Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. Diagn Microbiol Infect Dis. 2007;58:153–61.

    Article  CAS  Google Scholar 

  193. Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol. 1997;26:1005–11.

    Article  CAS  PubMed  Google Scholar 

  194. Kawasaki S, Fratamico PM, Wesley IV, Kawamoto S. Species-specific identification of Campylobacters by PCR-restriction fragment length polymorphism and PCR targeting of the gyrase B gene. Appl Environ Microbiol. 2008;74:2529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Man SM, Kaakoush NO, Octavia S, Mitchell H. The internal transcribed spacer region, a new tool for use in species differentiation and delineation of systematic relationships within the Campylobacter genus. Appl Environ Microbiol. 2010;76:3071–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Drancourt M, Raoult D. rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol. 2002;40:1333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Poyart C, Trieu-Cuot P, Quesne G. Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of ‘Streptococcus infantarius subsp. coli’ as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype 11.2 as Streptococcus pasteurianus sp. nov. Int J Syst Evol Microbiol. 2002;52:1247–55.

    CAS  PubMed  Google Scholar 

  198. Arbique JC, Poyart C, Trieu-Cuot P, et al. Accuracy of phenotypic and genotypic testing for identification of Streptococcus pneumoniae and description of Streptococcus pseudopneumoniae sp. nov. J Clin Microbiol. 2004;42:4686–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Poyart C, Quesnes G, Trieu-Cuot P. Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification of enterococci. J Clin Microbiol. 2000;38:415–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Zbinden A, Kohler N, Bloemberg GV. recA-based PCR assay for accurate differentiation of Streptococcus pneumoniae from other viridans streptococci. J Clin Microbiol. 2010;49:523–7.

    Article  PubMed  CAS  Google Scholar 

  201. Poyart C, Quesne G, Coulon S, Berche P, Trieu-Cuot P. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J Clin Microbiol. 1998;36:41–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Weng FY, Chiou CS, Lin PH, Yang SS. Application of recA and rpoB sequence analysis on phylogeny and molecular identification of Geobacillus species. J Appl Microbiol. 2009;107:452–64.

    Article  CAS  PubMed  Google Scholar 

  203. Teng JL, Tang Y, Lau SK, Woo PC. Reply to Perez del Molino Bernal and Aguero Balbin, “seqA1 is a useful target for identification of Tsukamurella pulmonis”. J Clin Microbiol. 2017;55:1592–4.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Teng JL, Tang Y, Chiu TH, et al. The groEL gene is a promising target for species-level identification of Tsukamurella. J Clin Microbiol. 2017;55:649–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Yamada Noda M, Ohkusu K, Hata H, et al. Mycobacterium species identification – A new approach via dnaJ gene sequencing. Syst Appl Microbiol. 2007;30:453–62.

    Article  CAS  PubMed  Google Scholar 

  206. Hong T, Butler WR, Hollis F, et al. Characterization of a novel rapidly growing Mycobacterium species associated with sepsis. J Clin Microbiol. 2003;41:5650–3.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Gray LD, Ketring KL, Tang YW. Clinical use of 16S rRNA gene sequencing to identify Mycoplasma felis and M. gateae associated with feline ulcerative keratitis. J Clin Microbiol. 2005;43:3431–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Inokuma H, Brouqui P, Drancourt M, Raoult D. Citrate synthase gene sequence: a new tool for phylogenetic analysis and identification of Ehrlichia. J Clin Microbiol. 2001;39:3031–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Roux V, Rydkina E, Eremeeva M, Raoult D. Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. Int J Syst Bacteriol. 1997;47:252–61.

    Article  CAS  PubMed  Google Scholar 

  210. Ho CC, Lau CCY, Martelli P, et al. Novel pan-genomic analysis approach in target selection for multiplex PCR identification and detection of Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia cepacia complex species: a proof-of-concept study. J Clin Microbiol. 2010;49:814–21.

    Article  PubMed  CAS  Google Scholar 

  211. Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol. 2010;48:1549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Cherkaoui A, Hibbs J, Emonet S, et al. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol. 2010;48:1169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Eigner U, Holfelder M, Oberdorfer K, Betz-Wild U, Bertsch D, Fahr AM. Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clin Lab. 2009;55:289–96.

    CAS  PubMed  Google Scholar 

  214. Seng P, Drancourt M, Gouriet F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49:543–51.

    Article  CAS  PubMed  Google Scholar 

  215. Chen JH, She KK, Wong OY, et al. Use of MALDI biotyper plus ClinProTools mass spectra analysis for correct identification of Streptococcus pneumoniae and Streptococcus mitis/oralis. J Clin Pathol. 2015;68:652–6.

    Article  CAS  PubMed  Google Scholar 

  216. Lau SK, Tang BS, Teng JL, et al. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for identification of clinically significant bacteria that are difficult to identify in clinical laboratories. J Clin Pathol. 2014;67:361–6.

    Article  CAS  PubMed  Google Scholar 

  217. Angeletti S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Methods. 2017;138:20–9.

    Article  CAS  PubMed  Google Scholar 

  218. Karger A. Current developments to use linear MALDI-TOF spectra for the identification and typing of bacteria and the characterization of other cells/organisms related to infectious diseases. Proteomics Clin Appl. 2016;10:982–93.

    Article  CAS  PubMed  Google Scholar 

  219. Mellmann A, Bimet F, Bizet C, et al. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol. 2009;47:3732–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lau SK, Wu AK, Teng JL, et al. Evidence for Elizabethkingia anophelis transmission from mother to infant, Hong Kong. Emerg Infect Dis. 2015;21:232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Drancourt M, Roux V, Fournier PE, Raoult D. rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. J Clin Microbiol. 2004;42:497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kong F, Wang H, Zhang E, et al. secA1 gene sequence polymorphisms for species identification of Nocardia species and recognition of intraspecies genetic diversity. J Clin Microbiol. 2010;48:3928–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lam JY, Wu AK, Leung WS, et al. Gordonia species as emerging causes of continuous-ambulatory-peritoneal-dialysis-related peritonitis identified by 16S rRNA and secA1 gene sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). J Clin Microbiol. 2015;53:671–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Osawa K, Shigemura K, Shirai H, et al. Bacterial identification using ssrA encoding transfer-messenger RNA. Southeast Asian J Trop Med Public Health. 2015;46:720–7.

    PubMed  Google Scholar 

  225. Wernecke M, Mullen C, Sharma V, et al. Evaluation of a novel real-time PCR test based on the ssrA gene for the identification of group B streptococci in vaginal swabs. BMC Infect Dis. 2009;9:148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Y. Woo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lau, S.K.P., Teng, J.L.L., Woo, P.C.Y. (2018). Bacterial Identification Based on Universal Gene Amplification and Sequencing. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-95111-9_1

Download citation

Publish with us

Policies and ethics