Skip to main content

Geometric Invariant Theory of Syzygies, with Applications to Moduli Spaces

  • Conference paper
  • First Online:
Geometry of Moduli (Abelsymposium 2017)

Part of the book series: Abel Symposia ((ABEL,volume 14))

Included in the following conference series:

Abstract

We define syzygy points of projective schemes, and introduce a program of studying their GIT stability. Then we describe two cases where we have managed to make some progress in this program, that of polarized K3 surfaces of odd genus, and of genus six canonical curves. Applications of our results include effectivity statements for divisor classes on the moduli space of odd genus K3 surfaces, and a new construction in the Hassett-Keel program for the moduli space of genus six curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Alper, M. Fedorchuk, D.I. Smyth, Finite Hilbert stability of (bi)canonical curves. Invent. Math. 191(3), 671–718 (2013)

    Article  MathSciNet  Google Scholar 

  2. M. Aprodu, G. Farkas, Koszul cohomology and applications to moduli, in Grassmannians, Moduli Spaces and Vector Bundles. Clay Math. Proc., vol. 14 (American Mathematical Society, Providence, 2011), pp. 25–50

    Google Scholar 

  3. M. Aprodu, A. Bruno, E. Sernesi, A characterization of bielliptic curves via syzygy schemes (2017, Preprint), arXiv:1708.08056

    Google Scholar 

  4. M. Artebani, S. Kondō, The moduli of curves of genus six and K3 surfaces. Trans. Am. Math. Soc. 363(3), 1445–1462 (2011)

    Article  MathSciNet  Google Scholar 

  5. D. Bayer, D. Eisenbud, Ribbons and their canonical embeddings. Trans. Am. Math. Soc. 347(3), 719–756 (1995)

    Article  MathSciNet  Google Scholar 

  6. M. Coppens, The Weierstrass gap sequence of the ordinary ramification points of trigonal coverings of P 1; existence of a kind of Weierstrass gap sequence. J. Pure Appl. Algebra 43(1), 11–25 (1986)

    Article  MathSciNet  Google Scholar 

  7. M. Cornalba, J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves. Ann. Sci. École Norm. Sup. (4) 21(3), 455–475 (1988)

    Article  MathSciNet  Google Scholar 

  8. A. Deopurkar, The canonical syzygy conjecture for ribbons. Math. Z. 288(3–4), 1157–1164 (2018)

    Article  MathSciNet  Google Scholar 

  9. A. Deopurkar, M. Fedorchuk, D. Swinarski, Toward GIT stability of syzygies of canonical curves. Algebr. Geom. 3(1), 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  10. I.V. Dolgachev, Classical Algebraic Geometry. A Modern View (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  11. I.V. Dolgachev, Y. Hu, Variation of geometric invariant theory quotients. With an appendix by Nicolas Ressayre. Inst. Hautes Études Sci. Publ. Math. 87, 5–56 (1998)

    Article  MathSciNet  Google Scholar 

  12. G. Farkas, Progress on syzygies of algebraic curves, in Moduli of Curves. Lect. Notes Unione Mat. Ital., vol. 21 (Springer, Cham, 2017), pp.107–138

    Google Scholar 

  13. G. Farkas, R. Rimányi, Quadric rank loci on moduli of curves and K3 surfaces (2017, Preprint), arXiv:1707.00756

    Google Scholar 

  14. M. Fedorchuk, D. Jensen, Stability of 2nd Hilbert points of canonical curves. Int. Math. Res. Not. IMRN 2013(22), 5270–5287 (2013)

    Article  MathSciNet  Google Scholar 

  15. W. Fulton, J. Harris, Representation Theory. A First Course. Graduate Texts in Mathematics, vol. 129 (Springer, New York, 1991)

    Google Scholar 

  16. F.J. Gallego, B.P. Purnaprajna, Degenerations of K3 surfaces in projective space. Trans. Am. Math. Soc. 349(6), 2477–2492 (1997)

    Article  MathSciNet  Google Scholar 

  17. D. Gieseker, Global moduli for surfaces of general type. Invent. Math. 43(3), 233–282 (1977)

    Article  MathSciNet  Google Scholar 

  18. D. Gieseker, Lectures on Moduli of Curves. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 69. Published for the Tata Institute of Fundamental Research, Bombay (Springer, Berlin, 1982)

    Google Scholar 

  19. D. Gieseker, Geometric invariant theory and applications to moduli problems, in Invariant Theory (Montecatini, 1982). Lecture Notes in Mathematics, vol. 996 (Springer, Berlin, 1983), pp. 45–73

    Google Scholar 

  20. M.L. Green, Koszul cohomology and the geometry of projective varieties. J. Differential Geom. 19(1), 125–171 (1984)

    Article  MathSciNet  Google Scholar 

  21. A. Grothendieck, Éléments de Géométrie Algébrique: III. Étude Cohomologique des Faisceaux Cohérents, Seconde partie. Inst. Hautes Études Sci. Publ. Math. 17, 5–91 (1963)

    Google Scholar 

  22. B. Hassett, D. Hyeon, Log canonical models for the moduli space of curves: the first divisorial contraction. Trans. Am. Math. Soc. 361(8), 4471–4489 (2009)

    Article  MathSciNet  Google Scholar 

  23. B. Hassett, D. Hyeon, Log minimal model program for the moduli space of stable curves: the first flip. Ann. Math. (2) 177(3), 911–968 (2013)

    Article  MathSciNet  Google Scholar 

  24. M. Kemeny, Syzygies of curves beyond Green’s conjecture, in Geometry of Moduli, ed. by J. Christophersen, K. Ranestad. Abel Symposia, vol. 14 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-94881-2_7

  25. G.R. Kempf, Instability in invariant theory. Ann. Math. (2) 108(2), 299–316 (1978)

    Article  MathSciNet  Google Scholar 

  26. R. Laza, K.G. O’Grady, Birational geometry of the moduli space of quartic K3 surfaces (2016, Preprint), arXiv:1607.01324

    Google Scholar 

  27. D. Luna, Slices étales, in Sur les groupes algébriques. Bull. Soc. Math. France, Paris, Mémoire, vol. 33 (Société Mathématique de France, Paris, 1973), pp. 81–105

    Article  Google Scholar 

  28. A. Marian, D. Oprea, R. Pandharipande, Segre classes and Hilbert schemes of points. Ann. Sci. Éc. Norm. Supér. (4) 50(1), 239–267 (2017)

    Google Scholar 

  29. A. Maroni, Le serie lineari speciali sulle curve trigonali. Ann. Mat. Pura Appl. (4) 25, 343–354 (1946)

    Article  MathSciNet  Google Scholar 

  30. I. Morrison, GIT constructions of moduli spaces of stable curves and maps, in Surveys in Differential Geometry, vol. 14 (International Press, Somerville, 2009), pp. 315–369

    Google Scholar 

  31. I. Morrison, Stability of Hilbert points of generic K3 surfaces. Centre de Recerca Matemtica Publication 401 (1999), pp. 1–12

    Google Scholar 

  32. F. Müller, The final log canonical model of \(\overline {\mathcal {M}}_6\). Algebra Number Theory 8(5), 1113–1126 (2014)

    Article  MathSciNet  Google Scholar 

  33. D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34, 3rd edn. (Springer, Berlin, 1994)

    Google Scholar 

  34. F.-O. Schreyer, Syzygies of canonical curves and special linear series. Math. Ann. 275(1), 105–137 (1986)

    Article  MathSciNet  Google Scholar 

  35. N.I. Shepherd-Barron, Invariant theory for S 5 and the rationality of M 6. Compos. Math. 70(1), 13–25 (1989)

    MathSciNet  MATH  Google Scholar 

  36. E. Viehweg, Quasi-projective moduli for polarized manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 30 (Springer, Berlin, 1995)

    Google Scholar 

  37. C. Voisin, Green’s canonical syzygy conjecture for generic curves of odd genus. Compos. Math. 141(5), 1163–1190 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Foremost, this paper owes its existence to the organizers of the Abel Symposium 2017 “Geometry of Moduli,” who gave me an opportunity and motivation to write up this work. I am also indebted to Gavril Farkas, whose influence is evident in every section of this paper, and who generously shared his and Seán Keel’s ideas to use syzygies as the means to construct the canonical model of \( \operatorname {\overline {\mathrm {M}}}_g\) at an AIM workshop in December 2012. All results in this paper grew out of my attempt to implement these ideas. I am grateful to Anand Deopurkar for his comments and suggestions on an earlier version of this paper. During the preparation of this paper, I was partially supported by the NSA Young Investigator grant H98230-16-1-0061 and Alfred P. Sloan Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksym Fedorchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fedorchuk, M. (2018). Geometric Invariant Theory of Syzygies, with Applications to Moduli Spaces. In: Christophersen, J., Ranestad, K. (eds) Geometry of Moduli. Abelsymposium 2017. Abel Symposia, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-94881-2_5

Download citation

Publish with us

Policies and ethics