Skip to main content

Scintillator Glasses

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Glasses can be an attractive option for many scintillator applications, due to their unique properties. This chapter introduces the reader to scintillator glasses and examines the basic advantages and disadvantages of glasses in comparison to other scintillator materials. Considerations for the synthesis of optimized scintillator glasses are presented, with an emphasis on compositional effects, including the use of optically active dopants and enriched materials. Basic characterization of glasses is detailed with respect to the scintillation process. Applications for scintillator glasses as they relate to specific forms of ionizing radiation, including \(\upalpha\) and \(\upbeta\) particles, electron beams, x-ray and \(\upgamma\) radiation, and neutrons, are discussed; the versatility of scintillator glasses is demonstrated by a number of diverse applications including radiation detection, radiography, scanning electron microscopy, and neutron diffraction. The chapter concludes with an outlook on the future of scintillator glasses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • G. Zanella, R. Zannoni: Absolute light yield of plastic scintillators and cerium scintillating glasses under low energy X-ray excitation, Nucl. Instrum. Methods Phys. Res. A 302, 352–354 (1991)

    Article  Google Scholar 

  • J.A. Johnson, R.L. Leonard, C. Alvarez, B. Barta, S. Schweizerd: Glass–ceramic scintillator. In: Nanocomposite, Ceramic and Thin Film Scintillators (Pan Stanford, Singapore 2016) pp. 79–106

    Google Scholar 

  • M.B. Barta, J.H. Nadler, Z. Kang, B.K. Wagner, R. Rosson, Y. Cai, K.H. Sandhage, B. Kahn: Composition optimization of scintillating rare-earth nanocrystals in oxide glass–ceramics for radiation spectroscopy, Appl. Opt. 53, D21–D28 (2014)

    Article  CAS  Google Scholar 

  • G.C. Rich, K. Kazkaz, H.P. Martinez, T. Gushue: Fabrication and characterization of a lithium-glass-based composite neutron detector, Nucl. Instrum. Methods Phys. Res. A 794, 15–24 (2015)

    Article  CAS  Google Scholar 

  • I. Shestakova, E. Ovechkina, V. Gaysinskiy, J.J. Antal, L. Bobek, V. Nagarkar: A high spatial resolution sensor for thermal neutron imaging, IEEE Trans. Nucl. Sci. 54, 1797–1800 (2007)

    Article  CAS  Google Scholar 

  • M. Koshimizu, K. Iwamatsu, M. Taguchi, S. Kurashima, A. Kimura, T. Yanagida, Y. Fujimoto, K. Watanabe, K. Asai: Influence of linear energy transfer on the scintillation decay behavior in a lithium glass scintillator, J. Luminesc. 169, 678–681 (2016)

    Article  CAS  Google Scholar 

  • T. Yanagida: Ionizing radiation induced emission: Scintillation and storage-type luminescence, J. Luminesc. 169, 544–548 (2016)

    Article  CAS  Google Scholar 

  • J. Iwanowska, L. Swiderski, M. Moszynski: Liquid scintillators and composites in fast neutron detection, J. Instrum. 7, C04004 (2012)

    Article  CAS  Google Scholar 

  • S. Jia, L. Huang, D. Ma, Z. Tai, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, Q. Yang, S. Xu: Luminescence properties of Tb3+-doped oxyfluoride scintillating glasses, J. Luminesc. 152, 241–243 (2014)

    Article  CAS  Google Scholar 

  • A.C. Stephan, S. Dai, S.A. Wallace, L.F. Miller: Modelling of composite neutron scintillators, Radiat. Prot. Dosim. 116, 165–169 (2005)

    Article  CAS  Google Scholar 

  • J.C. McComb, M.A. Coplan, M. Al-Sheikhly, A.K. Thompson, R.E. Vest, C.W. Clark: Noble gas excimer scintillation following neutron capture in boron thin films, J. Appl. Phys. 115, 144504 (2014)

    Article  CAS  Google Scholar 

  • R.T. Kouzes, A.T. Lintereur, E.R. Siciliano: Progress in alternative neutron detection to address the helium-3 shortage, Nucl. Instrum. Methods Phys. Res. A 784, 172–175 (2015)

    Article  CAS  Google Scholar 

  • M. Nikl, A. Yoshikawa: Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection, Adv. Opt. Mater. 3, 463–481 (2015)

    Article  CAS  Google Scholar 

  • R.C. Haight, H.Y. Lee, T.N. Taddeucci, J.M.O. Donnell, B.A. Perdue, N. Fotiades, M. Devlin, J.L. Ullmann, A. Laptev, T. Bredeweg, M. Jandel, R.O. Nelson, S.A. Wender, M.C. White, C.Y. Wu, E. Kwan, A. Chyzh, R. Henderson, J. Gostic: Two detector arrays for fast neutrons at LANSCE, J. Instrum. 7, C03028 (2012)

    Google Scholar 

  • M. Nikl: Scintillation detectors for x-rays, Meas. Sci. Technol. 17, R37 (2006)

    Article  CAS  Google Scholar 

  • G. Blasse: Luminescence and scintillation mechanisms in inorganic scintillators. In: Heavy Scintillators for Scientfic and Industrial Applications, ed. by F.L. Notaristerfani, M. Schneegans (Editions Frontières, Gif-sur-Yvette 1993)

    Google Scholar 

  • G. Blasse, B.C. Grabmaier: X-ray phosphors and scintillators (counting techniques). In: Luminescent Materials (Springer, Berlin 1994) pp. 170–194

    Chapter  Google Scholar 

  • G. Blasse, B.C. Grabmaier: X-ray phosphors and scintillators (integrating techniques). In: Luminescent Materials (Springer, Berlin, Heidelberg 1994) pp. 146–169

    Chapter  Google Scholar 

  • A. Lempicki, A.J. Wojtowicz, E. Berman: Fundamental limits of scintillator performance, Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993)

    Article  CAS  Google Scholar 

  • D.J. Robbins: On predicting the maximum efficiency of phosphor systems excited by ionizing-radiation, J. Electrochem. Soc. 127, 2694–2702 (1980)

    Article  CAS  Google Scholar 

  • P.A. Rodnyi, P. Dorenbos, C.W.E. Vaneijk: Energy-loss in inorganic scintillators, Phys. Status Solidi (b) 187, 15–29 (1995)

    Article  CAS  Google Scholar 

  • A.J. Wojtowicz: Rare-earth-activated wide bandgap materials for scintillators, Nucl. Instrum. Methods Phys. Res. A 486, 201–207 (2002)

    Article  CAS  Google Scholar 

  • G. Blasse, B.C. Grabmaier: How does a luminescent material absorb its excitation energy? In: Luminescent Materials (Springer, Berlin 1994) pp. 10–32

    Chapter  Google Scholar 

  • P. Dorenbos, R. Visser, J. Andriessen, C.W.E. van Eijk, J. Valbis, N.M. Khaidukov: Scintillation properties of possible cross-luminescence materials, Nucl. Tracks Radiat. Meas. 21, 101–103 (1993)

    Article  CAS  Google Scholar 

  • J.A. Rowlands: The physics of computed radiography, Phys. Medic. Biol. 47, R123–R166 (2002)

    Article  CAS  Google Scholar 

  • A. Pradhan, J. Lee, J. Kim: Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications, J. Medic. Phys. 33, 85–99 (2008)

    Article  CAS  Google Scholar 

  • L. Swiderski, M. Moszynski, D. Wolski, J. Iwanowska, T. Szczesniak, G. Pausch, C. Plettner, J. Stein, P. Schotanus, C. Hurlbut, J. Szabelski: Comparison of neutron detection efficiency of a He-3 counter and a boron-10 loaded liquid scintillator, IEEE Trans. Nucl. Sci. 57, 2857–2861 (2010)

    Article  CAS  Google Scholar 

  • E. Auffray, D. Bouttet, I. Dafinei, J. Fay, P. Lecoq, J.A. Mares, M. Martini, G. Mazé, F. Meinardi, B. Moine, M. Nikl, C. Pedrini, M. Poulain, M. Schneegans, S. Tavernier, A. Vedda: Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry, Nucl. Instrum. Methods Phys. Res. A 380, 524–536 (1996)

    Article  CAS  Google Scholar 

  • A. Correia, S. Chiquita, N.S. Hussain, R. Pirraco, C.C. Rosa: A multi-sensor dosimeter for brachytherapy based on radioluminescent fiber sensors, Proc. SPIE 8794, 87941S (2013)

    Article  CAS  Google Scholar 

  • G.B. Spector, T. McCollum, A.R. Spowart: Scintillator fiber optic long counter for neutron detection, Nucl. Instrum. Methods Phys. Res. A 309, 303–317 (1991)

    Article  Google Scholar 

  • D.A. Mulford, D.A. Scheinberg, J.G. Jurcic: The promise of targeted [alpha]-particle therapy, J. Nucl. Med. 46(1), 199S–204S (2005)

    Google Scholar 

  • S. Baccaro, A. Cecilia, A. Cemmi, G. Chen, E. Mihokova, M. Nikl: Optical characterization under irradiation of Ce3+(Tb3+)-doped phosphate scintillating glasses, IEEE Trans. Nucl. Sci. 48, 360–366 (2001)

    Article  CAS  Google Scholar 

  • I. Veronese, C. De Mattia, M. Fasoli, N. Chiodini, M.C. Cantone, F. Moretti, C. Dujardin, A. Vedda: Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica, J. Phys. Chem. C 119, 15572–15578 (2015)

    Article  CAS  Google Scholar 

  • C. Canevali, M. Mattoni, F. Morazzoni, R. Scotti, M. Casu, A. Musinu, R. Krsmanovic, S. Polizzi, A. Speghini, M. Bettinelli: Stability of luminescent trivalent cerium in silica host glasses modified by boron and phosphorus, J. Am. Chem. Soc. 127, 14681–14691 (2005)

    Article  CAS  Google Scholar 

  • J.E. Shelby: Introduction to Glass Science and Technology, 2nd edn. (Royal Society of Chemistry, Cambridge 2005)

    Google Scholar 

  • Y. Chen, D. Luo, L. Luo, X. Wang, T. Tang, W. Luo: Luminescence of Ce3+/Tb3+ ions in lithium-magnesium aluminosilicate glasses, J. Non-Cryst. Solids 386, 124–128 (2014)

    Article  CAS  Google Scholar 

  • G.C. Righini, A. Chiappini: Glass optical waveguides: A review of fabrication techniques, Opt. Eng. 53, 071819–071819 (2014)

    Article  CAS  Google Scholar 

  • C. Sella, R. Heindl, A. Robert: Rf sputtered Ce3+ activated SiO2 glass films as scintillators for alpha particles detection, Vacuum 36, 117–119 (1986)

    Article  CAS  Google Scholar 

  • J.W. Kohl: Response of various thin-film scintillators to low-energy particles, Nucl. Instrum. Methods 125, 413–417 (1975)

    Article  CAS  Google Scholar 

  • S.C. Gujrathi, L. Lessard: Light collection systems for thin film scintillation detectors, Nucl. Instrum. Methods Phys. Res. 206, 183–188 (1983)

    Article  CAS  Google Scholar 

  • J.C. Russ: The Image Processing Handbook (CRC, Boca Raton 1992)

    Google Scholar 

  • J.M. Boone: X-ray production, interaction, and detection in diagnostic imaging. In: Physics and Psychophysics, Handbook of Medical Imaging, Vol. 1, ed. by R.L. Van Metter, J. Beutel, H.L. Kundel (SPIE, Bellington 2000)

    Google Scholar 

  • C.B. Layne, W.H. Lowdermilk, M.J. Weber: Multiphonon relaxation of rare-earth ions in oxide glasses, Phys. Rev. B 16, 10–20 (1977)

    Article  CAS  Google Scholar 

  • C. Pfau: Low phonon energy glass ceramics for efficient rare-earth luminescence, Ph.D. Thesis (Martin-Luther-Universität, Halle-Wittenberg 2014)

    Google Scholar 

  • V.F. Sears: Neutron scattering lengths and cross sections, Neutron News 3, 26–37 (1992)

    Article  Google Scholar 

  • G.C. Tyrrell: Phosphors and scintillators in radiation imaging detectors, Nucl. Instrum. Methods Phys. Res. A 546, 180–187 (2005)

    Article  CAS  Google Scholar 

  • A.L. Huston, B.L. Justus, P.L. Falkenstein, R.W. Miller, H. Ning, R. Altemus: Remote optical fiber dosimetry, Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001)

    Article  CAS  Google Scholar 

  • T. Kim, Y. Yoon, D. Kil, Y. Hwang, H. Chung, I.K. Hoe, Y. Ahn: Effects of surrounding ion on Eu3+ luminescence in glass, Mater. Lett. 47, 290–296 (2001)

    Article  CAS  Google Scholar 

  • K. Whitten, R. Davis, M. Peck, G. Stanley: General Chemistry, 7th edn. (Brooks/Cole – Thomson Learning, Belmont 2004)

    Google Scholar 

  • D.R. Askeland: The Science and Engineering of Materials, 3rd edn. (PWS, Boston 1994)

    Google Scholar 

  • J. Heine, K. Müller-Buschbaum: Engineering metal-based luminescence in coordination polymers and metal-organic frameworks, Chem. Soc. Rev. 42, 9232–9242 (2013)

    Article  CAS  Google Scholar 

  • M.Z. Su, W. Zhao: Spectroscopic Properties of Rare Earths in Optical Materials, Springer Series in Materials Science, Vol. 83 (Springer, Berlin 2005)

    Book  Google Scholar 

  • K. Kawano, H. Tasaki, B.C. Hong, T. Ishitsuka: Rare-earth doped glass scintillators effective to spent nuclear fuels through photocatalyst, J. Alloys Compd. 451, 314–316 (2008)

    Article  CAS  Google Scholar 

  • A. Fukabori, T. Yanagida, V. Chani, F. Moretti, J. Pejchal, Y. Yokota, N. Kawaguchi, K. Kamada, K. Watanabe, T. Murata, Y. Arikawa, K. Yamanoi, T. Shimizu, N. Sarukura, M. Nakai, T. Norimatsu, H. Azechi, S. Fujino, H. Yoshida, A. Yoshikawa: Optical and scintillation properties of Pr-doped Li-glass for neutron detection in inertial confinement fusion process, J. Non-Cryst. Solids 357, 910–914 (2011)

    Article  CAS  Google Scholar 

  • T. Murata, S. Fujino, H. Yoshida, Y. Arikawa, T. Nakazato, T. Shimizu, N. Sarukura, M. Nakai, T. Norimatsu, H. Azechi, K. Kamada, Y. Usuki, T. Suyama, A. Yoshikawa, N. Sato, H. Kan: Custom-designed fast-response praseodymium-doped lithium 6 fluoro-oxide glass scintillator with enhanced cross-section for scattered neutron originated from inertial confinement fusion, IEEE Trans. Nucl. Sci. 57, 1426–1429 (2010)

    Article  CAS  Google Scholar 

  • X.-Y. Sun, D.-G. Jiang, W.-F. Wang, C.-Y. Cao, Y.-N. Li, G.-T. Zhen, H. Wang, X.-X. Yang, H.-H. Chen, Z.-J. Zhang, J.-T. Zhao: Luminescence properties of B2O3–GeO2–Gd2O3 scintillating glass doped with rare-earth and transition-metal ions, Nucl. Instrum. Methods Phys. Res. A 716, 90–95 (2013)

    Article  CAS  Google Scholar 

  • D.T. Valiev, S.A. Stepanov, C. Liu: Luminescent properties of lithium-phosphate-borate glasses doped with Tb3+/Eu3+ ions, IOP Conf. Ser. Mater. Sci. Eng. 110, 012053 (2016)

    Article  Google Scholar 

  • Y. Fujimoto, T. Yanagida, M. Koshimizu, K. Asai: Photoluminescence and Scintillation Properties of SiO2 Glass Activated with Eu2, Sens. Mater. 27, 263–268 (2015)

    CAS  Google Scholar 

  • J. He, Y. Wang, Y. Liu, K.P. Wang, R.H. Li, J.T. Fan, S.Q. Xu, L. Zhang: Tailoring the luminescence of europium ions in mesoporous AlPO4 monolithic glass, J. Phys. Chem. C 117, 21916–21922 (2013)

    Article  CAS  Google Scholar 

  • R.L. Leonard, S.K. Gray, S.D. Albritton, L.N. Brothers, R.M. Cross, A.N. Eastes, H.Y. Hah, H.S. James, J.E. King, S.R. Mishra, J.A. Johnson: Rare earth doped downshifting glass ceramics for photovoltaic applications, J. Non-Cryst. Solids 366, 1–5 (2013)

    Article  CAS  Google Scholar 

  • S. Schweizer, J.A. Johnson: Fluorozirconate-based glass ceramic X-ray detectors for digital radiography, Radiat. Meas. 42, 632–637 (2007)

    Article  CAS  Google Scholar 

  • B. Karmakar: Functional Glasses and Glass-Ceramics (Butterworth-Heinemann, Oxford 2017)

    Google Scholar 

  • J.K.R. Weber, M. Vu, C. Paßlick, S. Schweizer, D.E. Brown, C.E. Johnson, J.A. Johnson: The oxidation state of europium in halide glasses, J. Phys. Condens. Matter 23, 495402–495402 (2011)

    Article  CAS  Google Scholar 

  • X.-Y. Sun, S.-M. Huang, M. Gu, Q.-C. Gao, X.-S. Gong, Z.-P. Ye: Enhanced Tb3+ luminescence by non-radiative energy transfer from Gd3+ in silicate glass, Phys. B Condens. Matter 405, 569–572 (2010)

    Article  CAS  Google Scholar 

  • J.H. Bai, J.R. Kim, J.Y. Chung, J.H. Kim, J.H. Whang: Fabrication and properties analysis of lithium borate glass scintillators with transition metal oxides, J. Nucl. Sci. Technol. 5, 503–506 (2008)

    Article  Google Scholar 

  • H. Masai, S. Matsumoto, T. Fujiwara, Y. Tokuda, T. Yoko: Photoluminescent properties of Sb-doped phosphate glass, J. Am. Ceram. Soc. 95, 862–865 (2012)

    Article  CAS  Google Scholar 

  • H. Masai, T. Yanagida: Emission property of Ce3+-doped Li2O-B2O3-SiO2 glasses, Opt. Mater. Express 5, 1851–1858 (2015)

    Article  CAS  Google Scholar 

  • H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, T. Yoko: Scintillation property of rare earth-free SnO-doped oxide glass, Appl. Phys. Lett. 101, 191906 (2012)

    Article  CAS  Google Scholar 

  • P. Lecoq, A. Gektin, M. Korzhik: Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering (Springer, Cham 2016)

    Google Scholar 

  • R.K. Brow: Nature of alumina in phosphate glass: Properties of sodium aluminophosphate glass, J. Am. Ceram. Soc. 76, 913–918 (1993)

    Article  CAS  Google Scholar 

  • R.J. Freitas, K. Shimakawa, S. Kugler: Some remarks on the glass-transition temperature in chalcogenide glasses: A Correlation with the microhardness, Chalcogen. Lett. 10, 39–43 (2013)

    CAS  Google Scholar 

  • P.Y. Shih, T.S. Chin: Preparation of lead-free phosphate glasses with low Tg and excellent chemical durability, J. Mater. Sci. Lett. 20, 1811–1813 (2001)

    Article  CAS  Google Scholar 

  • M. Bengisu: Borate glasses for scientific and industrial applications: A review, J. Mater. Sci. 51, 2199–2242 (2016)

    Article  CAS  Google Scholar 

  • J.M. Parker: Fluoride glasses, Annu. Rev. Mater. Sci. 19, 21–41 (1989)

    Article  CAS  Google Scholar 

  • H.T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S.V.T.M. Afshar: Monro, H. Ebendorff-Heidepriem: Lead-germanate glasses and fibers: A practical alternative to tellurite for nonlinear fiber applications, Opt. Mater. Express 3, 1488–1503 (2013)

    Article  CAS  Google Scholar 

  • J. Fu, M. Kobayashi, J.M. Parker: Terbium-activated heavy scintillating glasses, J. Luminesc. 128, 99–104 (2008)

    Article  CAS  Google Scholar 

  • M. Poulain: Fluoride glass composition and processing. In: Fluoride Glass Fiber Optics, ed. by I.D. Aggarwal, G. Lu (Academic, Boston 1991) pp. 1–35

    Google Scholar 

  • L.H. Zheng, X.Y. Sun, R.H. Mao, H.H. Chen, Z.J. Zhang, J.T. Zhao: Luminescence properties of Ce3+-doped lithium borophosphate glasses and their correlations with the optical basicity, J. Non-Cryst. Solids 403, 1–4 (2014)

    Article  CAS  Google Scholar 

  • G. Sharma, K.S. Thind, H.S. Manupriya: Klare, S.B. Narang, L. Gerward, V.K. Dangwal: Effects of gamma-ray irradiation on optical properties of ZnO-PbO-B2O3 glasses, Nucl. Instrum. Methods Phys. Res. B 243, 345–348 (2006)

    Article  CAS  Google Scholar 

  • Z. Zhu, B. Liu, C. Cheng, Y. Yi, W. Guo, S. Huang, H. Chen, M. Gu, C. Ni, X. Liu: Enhanced light extraction efficiency for glass scintillator coupled with two-dimensional photonic crystal structure, Opt. Mater. 35, 2343–2346 (2013)

    Article  CAS  Google Scholar 

  • N.J. Cherepy, Z.M. Seeley, S.A. Payne, E.L. Swanberg, P.R. Beck, D.J. Schneberk, G. Stone, R. Perry, B. Wihl, S.E. Fisher, S.L. Hunter, P.A. Thelin, R.R. Thompson, N.M. Harvey, T. Stefanik, J. Kindem: Transparent ceramic scintillators for gamma spectroscopy and MeV imaging. In: Proc. SPIE Opt. Eng. & Appl. Conf (2015) p. 95930

    Google Scholar 

  • C.M. Pepin, R. Lecomte: Assessment of Quick-Stick 5870 high refractive index thermoplastic coupling compound, Nucl. Instrum. Methods Phys. Res. A 488, 670–672 (2002)

    Article  CAS  Google Scholar 

  • L. Bollinger, G.E. Thomas: Measurement of time dependence of scintillation intensity by a delayed-coincidence method, Rev. Sci. Instrum. 32, 1044 (1961)

    Article  CAS  Google Scholar 

  • S.E. Derenzo, W.W. Moses, S.C. Blankespoor, M. Ito, K. Oba: Design of a pulsed X-ray system for fluorescent lifetime measurements with a timing accuracy of 109 ps, IEEE Trans. Nucl. Sci. 41, 629–631 (1994)

    Article  CAS  Google Scholar 

  • S.E. Derenzo, M.J. Weber, W.W. Moses, C. Dujardin: Measurements of the intrinsic rise times of common inorganic scintillators, IEEE Trans. Nucl. Sci. 47, 860–864 (2000)

    Article  CAS  Google Scholar 

  • I.S. Kim, I.J. Lee, A. Appleby, E.A. Christman, M.J. Liepmann, G.H. Sigel Jr.: Airborne alpha emitters monitored by a glass fibre scintillator bundle, Radiat. Prot. Dosim. 61, 77–80 (1995)

    Article  CAS  Google Scholar 

  • G.F. Knoll: Radiation Detection and Measurement, 4th edn. (Wiley, Somerset 2011)

    Google Scholar 

  • C. Parriott: Other modes of detection. In: A Practical Guide to HPLC Detection, ed. by D. Parriott (Academic, Parsippany 1993)

    Google Scholar 

  • D.C. Marshall, J. Stephen: Secondary electron detector, with an extended life, for use in a scanning electron microscope, J. Phys. E 5, 1046 (1972)

    Article  Google Scholar 

  • J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. (Springer, New York 2003)

    Book  Google Scholar 

  • NASA/JPL-Caltech: https://photojournal.jpl.nasa.gov/jpeg/PIA16698.jpg

  • H.Y. Lee, T.N. Taddeucci, R.C. Haight, T.A. Bredeweg, A. Chyzh, M. Devlin, N. Fotiades, J.M. Gostic, R.A. Henderson, M. Jandel, E. Kwan, A. Laptev, R.O. Nelson, J.M. O'Donnell, B.A. Perdue, S.A. Wender, M.C. White, C.Y. Wu: Li-glass detector response study with a 252Cf source for low-energy prompt fission neutrons, Nucl. Instrum. Methods Phys. Res. A 703, 213–219 (2013)

    Article  CAS  Google Scholar 

  • S. Kim, J. Palta: The physics of stereotactic radiosurgery. In: Principles and Practice of Stereotactic Radiosurgery, ed. by L.S. Chin, W.F. Regine (Springer, New York 2008)

    Google Scholar 

  • L. Marcu, E. Bezak, B. Allen: Biomedical Physics in Radiotherapy for Cancer (Springer, London 2012)

    Book  Google Scholar 

  • J.H. Hubbell, S.M. Seltzer: X-Ray Mass Attenuation Coefficients, Radiation Physics Division, PML, NIST, doi:10.18434/T4D01F

    Google Scholar 

  • J.E. Trebes, K.W. Dolan, W.S. Haddad, J.J. Haskins, R.A. Lerche, C.M. Logan, D.E. Perkins, D.J. Schneberk, D. Rikard: High-resolution large-area high-energy x-ray tomography, Proc. SPIE Int. Soc. Opt. Eng. 3149, 173–176 (1997)

    Google Scholar 

  • P.F. Van der Stelt: Filmless imaging – The uses of digital radiography in dental practice, J. Am. Dent. Assoc. 136, 1379–1387 (2005)

    Article  Google Scholar 

  • R. Scholz: On the sensitivity of children to radiation, Med. Global Surviv. 1, 38–44 (1994)

    Google Scholar 

  • A. Heller: A CAT scanner for nuclear weapon components. In: Science & Technology Review (Lawrence Livermore National Laboratory, Livermore 2009)

    Google Scholar 

  • H.E. Martz, C.M. Logan, D.J. Schneberk, P.J. Shull: Radiation detectors. In: X-Ray Imaging (CRC, Boca Raton 2016) pp. 187–202

    Chapter  Google Scholar 

  • K. Hashimoto, H. Irie, A. Fujishima: TiO2 photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys. 44, 8269 (2005)

    Article  CAS  Google Scholar 

  • A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  • E.H. Lehmann, S. Hartmann, M.O. Speidel: Investigation of the content of ancient tibetan metallic Buddha statues by means of neutron imaging methods, Archaeometry 52, 416–428 (2010)

    Article  CAS  Google Scholar 

  • M.F. L'Annunziata: Radiation physics and radionuclide decay. In: Handbook of Radioactivity Analysis, 3rd edn., (Academic Press, Amsterdam 2012) pp. 1–162

    Google Scholar 

  • L. Coates, M.J. Cuneo, M.J. Frost, J. He, K.L. Weiss, S.J. Tomanicek, H. McFeeters, V.G. Vandavasi, P. Langan, E.B. Iverson: The macromolecular neutron diffractometer MaNDi at the spallation neutron source, J. Appl. Cryst. 48, 1302–1306 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. A.R. Lubinsky and Charles E. Johnson for their thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Lee Leonard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Leonard, R.L., Johnson, J.A. (2019). Scintillator Glasses. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_46

Download citation

Publish with us

Policies and ethics