Skip to main content

Measuring Photosynthesis and Respiration with Infrared Gas Analysers

  • Chapter
  • First Online:
Advances in Plant Ecophysiology Techniques

Abstract

Earth primary productivity reflects the balance between two important biological processes: photosynthesis and respiration (Atkin et al. 2015; Niinemets 2016). Photosynthesis (A) refers to the assimilation of the atmospheric CO2 and its conversion into sugars, the first basic organic compounds entering the metabolism. This process of CO2 fixation uses the sun radiation as the energy source, and water as the electron donor, which in turn releases oxygen in the atmosphere. Dark respiration (R D) or mitochondrial respiration (Atkin and Tjoelker 2003) employs the products of photosynthesis through the glycolysis (cytosol), the tricarboxylic acid cycle (TCA, matrix of mitochondria) and the electron transport rate chain (ETC, inner membrane mitochondria) to produce ATP and carbon skeletons needed for growth, cell maintenance, and other essential cellular processes. During the process of respiration, O2 is consumed, and CO2 is released to the atmosphere within the same order of magnitude than photosynthesis (Jansson et al. 2010), which highlights the importance of considering this process in the leaves, whole-plant and global models of carbon, water, and oxygen fluxes (Valentini et al. 2000; Canadell et al. 2007; Atkin et al. 2015). The velocity and extent of both processes can be assessed at the leaf level using infrared-based gas exchange analysers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG et al (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–636

    Article  CAS  PubMed  Google Scholar 

  • Bellasio C, Beerling DJ, Griffiths H (2016) An excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. Plant Cell Environ 39:1180–1197

    Article  CAS  PubMed  Google Scholar 

  • Buckley TN, Díaz-Espejo A (2015) Partitioning changes in photosynthetic rate into contributions from different variables. Plant Cell Environ 38:1200–1211

    Article  CAS  PubMed  Google Scholar 

  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    Article  PubMed  PubMed Central  Google Scholar 

  • Carriquí M, Cabrera HM, Conesa MÀ, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Ribas-Carbo M, Tomás M, Flexas J (2015) Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. Plant Cell Environ 38:448–460

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Cohu CM, Muller O, Adams WW III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    Article  CAS  PubMed  Google Scholar 

  • Epron D, Godard D, Cornic G, Genty B (1995) Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L and Castanea sativa mill). Plant Cell Environ 18:43–51

    Article  Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-berry leaf photosynthesis model. Plant Cell Environ 27:137–153

    Article  CAS  Google Scholar 

  • Evans JR, Santiago LS (2014) PrometheusWiki gold leaf protocol: gas exchange using LI-COR 6400. Funct Plant Biol 41:223–226

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Ball JT, Berry JA (1989) Photosynthesis: principles and field techniques. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology: field methods and instrumentation. Chapman & Hall, New York, pp 209–253

    Chapter  Google Scholar 

  • Field CB, Ball JT, Berry JA (2000) Photosynthesis: principles and field techniques. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology. Springer, Dordrecht, pp 209–253

    Chapter  Google Scholar 

  • Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471

    Article  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyerc E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012a) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193:70–84

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Loreto F, Medrano H (eds) (2012b) Terrestrial photosynthesis in a changing environment: a molecular, physiological, and ecological approach. Cambridge University Press, Cambridge ISBN: 9780521899413

    Google Scholar 

  • Flexas J, Scoffoni C, Gago J, Sack L (2013) Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J Exp Bot 64:3965–3981

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbó M, Tomàs M, Niinemets Ü (2016) Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ 39:965–982

    Article  CAS  PubMed  Google Scholar 

  • Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Doctoral dissertation, Wageningen University, Veenman

    Google Scholar 

  • Gago J, Douthe C, Flórez-Sarasa I, Escalona JM, Galmés J, Fernie AR, Flexas J, Medrano H (2014) Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci 226:108–119

    Article  CAS  PubMed  Google Scholar 

  • Gallé A, Flexas J (2010) Gas-exchange and chlorophyll fluorescence measurements in grapevine leaves in the field. In: Delrot S, Medrano H, Or E, Bavaresco L, Grando S (eds) Methodologies and results in grapevine research. Springer, Dordrecht, pp 107–121

    Chapter  Google Scholar 

  • Gallé A, Florez-Sarasa I, Tomás M, Pou A, Medrano H, Ribas-Carbó M, Flexas J (2009) The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? J Exp Bot 60:2379–2390

    Article  CAS  PubMed  Google Scholar 

  • Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RA, Madgwick PJ, Haslam RP, Medrano H, Parry MA (2005) RubisCO specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579

    Article  Google Scholar 

  • Galmés J, Molins A, Flexas J, Conesa MÀ (2017) Coordination between leaf CO2 diffusion and Rubisco properties allows maximizing photosynthetic efficiency in Limonium species. Plant Cell Environ 40:2081–2094

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Harbinson J, Briantais JM, Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth Res 25:249–257

    Article  CAS  PubMed  Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849

    Article  CAS  Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282

    Article  CAS  Google Scholar 

  • Hermida-Carrera C, Kapralov MV, Galmés J (2016) Rubisco catalytic properties and temperature response in crops. Plant Physiol 171:2549–2561

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. BioSci 60:685–696

    Article  Google Scholar 

  • Jones HG (1985) Partitioning stomatal and non-stomatal limitations to photosynthesis. Plant Cell Environ 8:95–104

    Article  Google Scholar 

  • Laisk A, Oja V (2018) Kinetics of photosystem II electron transport: a mathematical analysis based on chlorophyll fluorescence induction. Photosynth Res 136:63 https://doi.org/10.1007/s11120-017-0439-y

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Farage PK, Garcia RL (1996) Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J Exp Bot 47:1629–1642

    Article  CAS  Google Scholar 

  • Loriaux S, Avenson T, Welles J, McDermitt D, Eckles R, Riensche B, Genty B (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant Cell Environ 36:1755–1770

    Article  CAS  PubMed  Google Scholar 

  • Martins SC, Galmés J, Molins A, DaMatta FM (2013) Improving the estimation of mesophyll conductance to CO2: on the role of electron transport rate correction and respiration. J Exp Bot 64:3285–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Montero R, Ribas-Carbó M, Del Saz NF, El Aou-ouad H, Berry JA, Flexas J, Bota J (2016) Improving respiration measurements with gas exchange analyzers. J Plant Physiol 207:73–77

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü (2016) Within-canopy variations in functional leaf traits: structural, chemical and ecological controls and diversity of responses. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy photosynthesis: from basics to applications. Springer, Berlin, pp 101–141

    Chapter  Google Scholar 

  • Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T (2005) Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant Cell Environ 28:1552–1566

    Article  Google Scholar 

  • Niinemets Ü, Díaz-Espejo A, Flexas J, Galmes J, Warren CR (2009) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282

    Article  CAS  PubMed  Google Scholar 

  • Osmond B, Förster B (2006) Photoinhibition: then and now. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, Photoinhibition, gene regulation, and environment: advances in photosynthesis and respiration. Kluwer, Dordrecht, pp 11–22

    Chapter  Google Scholar 

  • Osmond CB, Ludlow MM, Davis R, Cowan IR, Powles SB, Winter K (1979) Stomatal responses to humidity in Opuntia inermis in relation to control of CO2 and H2O exchange patterns. Oecologia 41:65–76

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Martín A, Flexas J, Ribas-Carbó M, Bota J, Tomás M, Infante JM, Díaz-Espejo A (2009) Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. J Exp Bot 60:2391–2405

    Article  CAS  PubMed  Google Scholar 

  • Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbó M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J Exp Bot 60:2217–2234

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD (2016) What gas exchange data can tell us about photosynthesis. Plant Cell Environ 39:1161–1163

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriquí M, Laanisto L, Morales L, Nadal M, Rojas R, Talts E, Tomas M, Hanba Y, Niinemets Ü, Flexas J (2016) The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol 209:1576–1590

    Article  CAS  PubMed  Google Scholar 

  • Valentini R, Epron D, Deangelis P, Matteucci G, Dreyer E (1995) In-situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L) leaves – diurnal cycles under different levels of water-supply. Plant Cell Environ 18:631–640

    Article  CAS  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Guðmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404(6780):861–865

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas-exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Walker BJ, Skabelund DC, Busch FA, Ort DR (2016) An improved approach for measuring the impact of multiple CO2 conductances on the apparent photorespiratory CO2 compensation point through slope–intercept regression. Plant Cell Environ 39:1198–1203

    Article  CAS  PubMed  Google Scholar 

  • Walker BJ, Orr DJ, Carmo-Silva E, Parry MA, Bernacchi CJ, Ort DR (2017) Uncertainty in measurements of the photorespiratory CO2 compensation point and its impact on models of leaf photosynthesis. Photosynth Res 132:245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van der Putten, Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell Environ 32:448–464

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Sun Z, Struik PC, Gu J (2011) Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. J Exp Bot 62:3489–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

For Further Details

  • LI-COR (2012) Using the LI-6400/LI-6400XT portable photosynthesis system – Version 6. LI-COR Biosciences Inc., Lincoln

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Flexas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Douthe, C., Gago, J., Ribas-Carbó, M., Núñez, R., Pedrol, N., Flexas, J. (2018). Measuring Photosynthesis and Respiration with Infrared Gas Analysers. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_4

Download citation

Publish with us

Policies and ethics