Skip to main content

Deep Learning Framework for Multi-class Breast Cancer Histology Image Classification

  • Conference paper
  • First Online:
Book cover Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

Abstract

In this work, we present a deep learning framework for multi-class breast cancer image classification as our submission to the International Conference on Image Analysis and Recognition (ICIAR) 2018 Grand Challenge on BreAst Cancer Histology images (BACH). As these histology images are too large to fit into GPU memory, we first propose using Inception V3 to perform patch level classification. The patch level predictions are then passed through an ensemble fusion framework involving majority voting, gradient boosting machine (GBM), and logistic regression to obtain the image level prediction. We improve the sensitivity of the Normal and Benign predicted classes by designing a Dual Path Network (DPN) to be used as a feature extractor where these extracted features are further sent to a second layer of ensemble prediction fusion using GBM, logistic regression, and support vector machine (SVM) to refine predictions. Experimental results demonstrate our framework shows a 12.5\(\%\) improvement over the state-of-the-art model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Cancer Statistics Working Group: United States Cancer Statistics: 1999–2014 Incidence and Mortality Web-based Report. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute, Atlanta (2017). www.cdc.gov/uscs

  2. Saadatmand, S., et al.: Influence of tumour stage at breast cancer detection on survival in modern times: population based study in 173 797 patients. Bmj 351, h4901 (2015)

    Article  Google Scholar 

  3. Berry, D.A., et al.: Effect of screening and adjuvant therapy on mortality from breast cancer. New Engl. J. Med. 353(17), 1784–1792 (2005)

    Article  Google Scholar 

  4. de Gelder, R., et al.: The effects of population-based mammography screening starting between age 40 and 50 in the presence of adjuvant systemic therapy. Int. J. Cancer 137(1), 165–172 (2015)

    Article  Google Scholar 

  5. Hadjiiski, L., et al.: Advances in CAD for diagnosis of breast cancer. Curr. Opin. Obstet. Gynecol. 18(1), 64 (2006)

    Article  Google Scholar 

  6. Elmore, J.G., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. Jama 313(11), 1122–1132 (2015)

    Article  Google Scholar 

  7. Macenko, M.: A method for normalizing histology slides for quantitative analysis. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009. IEEE (2009)

    Google Scholar 

  8. Vahadane, A., et al.: Structure-preserved color normalization for histological images. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE (2015)

    Google Scholar 

  9. Wang, D., et al.: Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718 (2016)

  10. Liu, Y., et al.: Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442 (2017)

  11. Araújo, T., et al.: Classification of breast cancer histology images using convolutional neural networks. PloS one 12(6), e0177544 (2017)

    Article  Google Scholar 

  12. Nayak, N., et al.: Classification of tumor histopathology via sparse feature learning. In: 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI). IEEE (2013)

    Google Scholar 

  13. Gorelick, L., et al.: Prostate histopathology: learning tissue component histograms for cancer detection and classification. IEEE Trans. Med. Imaging 32(10), 1804–1818 (2013)

    Article  Google Scholar 

  14. Xu, Y., et al.: Weakly supervised histopathology cancer image segmentation and classification. Med. Image Anal. 18(3), 591–604 (2014)

    Article  Google Scholar 

  15. Ciompi, F., et al.: The importance of stain normalization in colorectal tissue classification with convolutional networks. arXiv preprint arXiv:1702.05931 (2017)

  16. Hou, L., et al.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  17. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  18. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  19. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  20. Wang, W., et al.: Detection and classification of thyroid follicular lesions based on nuclear structure from histopathology images. Cytom. Part A 77(5), 485–494 (2010)

    Google Scholar 

  21. Bejnordi, B.E., et al.: Stain specific standardization of whole-slide histopathological images. IEEE Trans. Med. Imaging 35(2), 404–415 (2016)

    Article  Google Scholar 

  22. Khan, A.M., et al.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014)

    Article  Google Scholar 

  23. Chen, Y., et al.: Dual path networks. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  24. Zhu, W., et al.: DeepLung: deep 3D dual path nets for automated pulmonary nodule detection and classification. In: IEEE WACV (2018)

    Google Scholar 

  25. Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep multi-instance networks with sparse label assignment for whole mammogram classification. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 603–611. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_69

    Chapter  Google Scholar 

  26. Zhu, W., et al.: Adversarial deep structured nets for mass segmentation from mammograms. In: IEEE ISBI (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeeleng S. Vang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vang, Y.S., Chen, Z., Xie, X. (2018). Deep Learning Framework for Multi-class Breast Cancer Histology Image Classification. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_104

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_104

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics