Skip to main content

Improved Synthesis of Graphene-Like Materials and Their Application

  • Chapter
  • First Online:
Nanocarbons for Energy Conversion: Supramolecular Approaches

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1160 Accesses

Abstract

Basic research on graphene is maturing, and now the application of graphene has been actively studied. For use in industrial products, it is indispensable to supply a sufficient amount of graphene; however, mass production of high-quality and defectless graphene is potentially difficult. Recent trends focus on graphene-like materials , which are prepared by chemical and electrochemical techniques. In this section, synthesis methods of graphene-like materials which have potentials for mass production are disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billaud D, El Haouari A, Gerardin R (1989) Synthesis and characterization of ternary FeCl4−CH3NO2-graphite intercalation compounds. Synth Met 29:241–246

    Article  Google Scholar 

  2. Billaud D, El Haouari A (1989) Electrointercalation of tetrahedral AlCl4− and GaCl4− anions into graphite. Synth Met 34:79–83

    Article  Google Scholar 

  3. Shioyama H, Crespin M, Seron A et al (1993) Electrochemical oxidation of graphite in an aqueous medium: intercalation of FeCl4−. Carbon 31(1):223–226

    Article  Google Scholar 

  4. Su CY, Lu AY, Xu YP et al (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3):2332–2339. https://doi.org/10.1021/nn200025p

    Article  Google Scholar 

  5. Parvez K, Li RJ, Puniredd SR et al (2013) Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7(4):3598–3606. https://doi.org/10.1021/nn400576v

    Article  Google Scholar 

  6. Parvez K, Wu Z, Li R et al (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136(16):6083–6091. https://doi.org/10.1021/ja5017156

    Article  Google Scholar 

  7. Liu JL, Yang HP, Zhen SG et al (2013) A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Adv 3:11745–11750. https://doi.org/10.1039/C3RA41366G

    Article  Google Scholar 

  8. Liu N, Luo F, Wu HX et al (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525. https://doi.org/10.1002/adfm.200700797

  9. Lu J, Yang JX, Wang JZ et al (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8):2367–2375. https://doi.org/10.1021/nn900546b

    Article  Google Scholar 

  10. Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398. https://doi.org/10.1039/C3CS60217F

    Article  Google Scholar 

  11. Haar S, Bruna M, Lian JX et al (2016) Liquid-phase exfoliation of graphite into single- and few-layer graphene with α-functionalized alkanes. J Phys Chem Lett 7(14):2714–2721. https://doi.org/10.1021/acs.jpclett.6b01260

    Article  Google Scholar 

  12. Eigler S, Hirsch A (2014) Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew Chem Int Ed 53(30):7720–7738. https://doi.org/10.1002/anie.201402780

    Article  Google Scholar 

  13. Feng L, Yang X, Shi X et al (2013) Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 9(11):1989–1997. https://doi.org/10.1002/smll.201202538

    Article  Google Scholar 

  14. Robinson JT, Tabakman SM, Liang Y et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831. https://doi.org/10.1021/ja2010175

    Article  Google Scholar 

  15. Tian B, Wang C, Zhang S et al (2011) Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5(9):7000–7009. https://doi.org/10.1021/nn201560b

    Article  Google Scholar 

  16. Mei KC, Rubio N, Costa PM et al (2015) Synthesis of double-clickable functionalised graphene oxide for biological applications. Chem Commun 51:14981–14984. https://doi.org/10.1039/C5CC05412E

    Article  Google Scholar 

  17. Qi B-P, Hu H, Bao L et al (2015) An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots. Nanoscale 7:5969–5973. https://doi.org/10.1039/C5NR00842E

    Article  Google Scholar 

  18. Strom AT, Dillon EP, Hamilton CE et al (2010) Nitrene addition to exfoliated graphene: a one-step route to highly functionalized graphene. Chem Commun 46:4097–4099. https://doi.org/10.1039/C001488E

    Article  Google Scholar 

  19. Quintana M, Spyrou K, Grzelczak M et al (2010) Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 4(6):3527–3533. https://doi.org/10.1021/nn100883p

    Article  Google Scholar 

  20. Li J, Li M, Zhou L-L et al (2016) Click and patterned functionalization of graphene by Diels-Alder reaction. J Am Chem Soc 138:7448–7451. https://doi.org/10.1021/jacs.6b02209

    Article  Google Scholar 

  21. Zhong X, Jin J, Li S et al (2010) Aryne cycloaddition: highly efficient chemical modification of graphene. Chem Commun 46:7340–7342. https://doi.org/10.1039/C0CC02389B

    Article  Google Scholar 

  22. Georgakilas V, Bourlinos AB, Zboril R et al (2010) Organic functionalisation of graphenes. Chem Commun 46:1766–1768. https://doi.org/10.1039/B922081J

    Article  Google Scholar 

  23. Choi EK, Jeon IY, Bae SY et al (2010) High-yield exfoliation of three-dimensional graphite into two-dimensional graphene-like sheets. Chem Commun 46:6320–6322. https://doi.org/10.1039/C0CC00753F

    Article  Google Scholar 

  24. Jeon IY, Yu D, Bae SY et al (2011) Formation of large-area nitrogen-doped graphene film prepared from simple solution casting of edge-selectively functionalized graphite and its electrocatalytic activity. Chem Mater 23:3987–3992. https://doi.org/10.1021/cm201542m

    Article  Google Scholar 

  25. Yuan C, Chen W, Yan L (2012) Amino-grafted graphene as a stable and metal-free solid basic catalyst. J Mater Chem 22:7456–7460. https://doi.org/10.1039/C2JM30442B

    Article  Google Scholar 

  26. Li Z, Wang R, Young RJ et al (2013) Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer 54:6437–6446

    Article  Google Scholar 

  27. Brodie BC (1859) XIII. On the atomic weight of graphite. Philos Trans R Soc Lond 149:248–259. https://doi.org/10.1098/rstl.1859.0013

    Article  Google Scholar 

  28. Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31:1481–1487. https://doi.org/10.1002/cber.18980310237

    Article  Google Scholar 

  29. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  30. Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778. https://doi.org/10.1021/cm981085u

    Article  Google Scholar 

  31. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  Google Scholar 

  32. Morimoto N, Suzuki H, Takeuchi Y et al (2017) Real-time, in situ monitoring of the oxidation of graphite: lessons learned. Chem Mater 29(5):2150–2156. https://doi.org/10.1021/acs.chemmater.6b04807

    Article  Google Scholar 

  33. Lin T, Chen J, Bi H et al (2013) Facile and economical exfoliation of graphite for mass production of high-quality graphene sheets. J Mater Chem A 1:500–504

    Article  Google Scholar 

  34. Jeon IY, Choi HJ, Jung SM et al (2013) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135(4):1386–1393. https://doi.org/10.1021/ja3091643

    Article  Google Scholar 

  35. Shin Y, Lee J, Yang J et al (2014) Mass production of graphene quantum dots by one-pot synthesis directly from graphite in high yield. Small 10(5):866–870. https://doi.org/10.1002/smll.201302286

    Article  Google Scholar 

  36. Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. https://doi.org/10.1038/nnano.2008.215

    Article  Google Scholar 

  37. Tung VC, Allen MJ, Yang Y et al (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29. https://doi.org/10.1038/nnano.2008.329

    Article  Google Scholar 

  38. Sun L, Fugetsu B (2013) Mass production of graphene oxide from expanded graphite. Mater Lett 109:207–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Nishina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishina, Y. (2019). Improved Synthesis of Graphene-Like Materials and Their Application. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics