Skip to main content

Cognitive Architectures as Scaffolding for Risky Choice Models

  • Chapter
  • First Online:

Abstract

Debates in decision making, such as the debate about the empirical validity of the priority heuristic, a model of risky choice, are sometimes difficult to resolve, because hypotheses about decision processes are either formulated qualitatively or not precisely enough. This lack of precision often leaves empirical tests with response times and other detailed behavioral data inconclusive. One way to increase the precision of decision models is to implement them in broad cognitive frameworks such as the cognitive architecture ACT-R. ACT-R can be used to construct detailed process models of how people make, for example, risky choices, and to derive process predictions about, among others, eye movements, absolute response times, or brain activation. These precise process models make explicit their underlying assumptions, which facilitate direct model comparisons and make the models amenable to strict empirical tests. We demonstrate the level of detail that ACT-R provides with an ACT-R implementation of the inferential heuristic take-the-best. We end by addressing the question of why cognitive architectures are still not widespread in judgment and decision making.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, J. R. (2007). How can the human mind occur in the physical universe? New York: Oxford University Press.

    Book  Google Scholar 

  • Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111, 1036–1060.

    Article  Google Scholar 

  • Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, 2, 396–408.

    Article  Google Scholar 

  • Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: Making choices without trade-offs. Psychological Review, 113, 409–432.

    Article  Google Scholar 

  • Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2008). Risky choice with heuristics: Reply to Birnbaum (2008), Johnson, Schulte-Mecklenbeck, and Willemsen (2008), and Rieger and Wang (2008). Psychological Review, 115, 281–289.

    Article  Google Scholar 

  • Busemeyer, J. R., & Wang, Y. M. (2000). Model comparisons and model selections based on generalization criterion methodology. Journal of Mathematical Psychology, 44, 171–189.

    Article  Google Scholar 

  • Conte, R., Andrighetto, G., & Campennl, M. (Eds.). (2013). Minding norms: Mechanisms and dynamics of social order in agent societies. Oxford: Oxford University Press.

    Google Scholar 

  • Dancy, C. L., Ritter, F. E., Berry, K. A., & Klein, L. C. (2015). Using a cognitive architecture with a physiological substrate to represent effects of a psychological stressor on cognition. Computational and Mathematical Organization Theory, 21, 90–114.

    Article  Google Scholar 

  • Dimov, C. M., Marewski, J. N., & Schooler, L. J. (2013). Constraining ACT-R models of decision strategies: An experimental paradigm. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th annual conference of the Cognitive Science Society (pp. 2201–2206). Austin, TX: Cognitive Science Society.

    Google Scholar 

  • Dougherty, M. R., Gettys, C. F., & Ogden, E. E. (1999). MINERVA-DM: A memory processes model for judgments of likelihood. Psychological Review, 106, 180–209.

    Article  Google Scholar 

  • Fechner, H. B., Pachur, T., Schooler, L. J., Mehlhorn, K., Battal, C., Volz, K. G., & Borst, J. P. (2016). Strategies for memory-based decision making: Modeling behavioral and neural signatures within a cognitive architecture. Cognition, 157, 77–99.

    Article  Google Scholar 

  • Fum, D., Del Missier, F., & Stocco, A. (2007). The cognitive modeling of human behavior: Why a model is (sometimes) better than 10,000 words. Cognitive Systems Research, 8, 135–142.

    Article  Google Scholar 

  • Gigerenzer, G. (1996). On narrow norms and vague heuristics: A reply to Kahneman and Tversky. Psychological Review, 103, 592–596.

    Article  Google Scholar 

  • Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science, 1, 107–143.

    Article  Google Scholar 

  • Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103, 650–669.

    Article  Google Scholar 

  • Gigerenzer, G., Todd, P. M., & The ABC Research Group. (1999). Simple heuristics that make us smart. New York: Oxford University Press.

    Google Scholar 

  • Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109, 75–90.

    Article  Google Scholar 

  • Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518–565.

    Article  Google Scholar 

  • Hafenbrädl, S., Waeger, D., Marewski, J. N., & Gigerenzer, G. (2016). Applied decision making with fast-and-frugal heuristics. Journal of Applied Research in Memory and Cognition, 5, 215–231.

    Article  Google Scholar 

  • Hester, R. L., Brown, A. J., Husband, L., Iliescu, R., Pruett, D., Summers, R., et al. (2011). HumMod: A modeling environment for the simulation of integrative human physiology. Frontiers in Physiology, 2, 1–12.

    Article  Google Scholar 

  • Jacobs, A. M., & Grainger, J. (1994). Models of visual word recognition: Sampling the state of the art. Journal of Experimental Psychology: Human Perception and Performance, 20, 1311–1334.

    Google Scholar 

  • Johnson, E. J., Schulte-Mecklenbeck, M., & Willemsen, M. C. (2008). Process models deserve process data: Comment on Brandstätter, Gigerenzer, and Hertwig (2006). Psychological Review, 115, 263–272.

    Article  Google Scholar 

  • Juvina, I., Lebiere, C., Martin, J. M., & Gonzalez, C. (2011). Intergroup prisoner’s dilemma with intragroup power dynamics. Games, 2, 21–51.

    Article  Google Scholar 

  • Juvina, I., Lebiere, C., & Gonzalez, C. (2015). Modeling trust dynamics in strategic interaction. Journal of Applied Research in Memory and Cognition, 4, 197–211.

    Article  Google Scholar 

  • Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. (1997). Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education, 8, 30–43.

    Google Scholar 

  • Laird, J. E. (2012). The soar cognitive architecture. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lejarraga, T., Dutt, V., & Gonzalez, C. (2012). Instance-based learning: A general model of repeated binary choice. Journal of Behavioral Decision Making, 25, 143–153.

    Article  Google Scholar 

  • Marewski, J. N., Gaissmaier, W., & Gigerenzer, G. (2010a). Good judgments do not require complex cognition. Cognitive Processing, 11, 103–121.

    Article  Google Scholar 

  • Marewski, J. N., Gaissmaier, W., & Gigerenzer, G. (2010b). We favor formal models of heuristics rather than lists of loose dichotomies: A reply to Evans and Over. Cognitive Processing, 11, 177–179.

    Article  Google Scholar 

  • Marewski, J. N., & Mehlhorn, K. (2011). Using the ACT-R architecture to specify 39 quantitative process models of decision making. Judgment and Decision making, 6, 439–519.

    Google Scholar 

  • Marewski, J. N., & Olsson, H. (2009). Beyond the null ritual: Formal modeling of psychological processes. Zeitschrift für Psychologie/Journal of Psychology, 217, 49–60.

    Article  Google Scholar 

  • Marewski, J. N., & Schooler, L. J. (2011). Cognitive niches: An ecological model of strategy selection. Psychological Review, 118, 393–437.

    Article  Google Scholar 

  • Marewski, J. N., Schooler, L. J., & Gigerenzer, G. (2010). Five principles for studying people's use of heuristics. Acta Psychologica Sinica, 42, 72–87.

    Article  Google Scholar 

  • Marinier, R. P., Laird, J. E., & Lewis, R. L. (2009). A computational unification of cognitive behavior and emotion. Cognitive Systems Research, 10, 48–69.

    Article  Google Scholar 

  • Mellers, B., Hertwig, R., & Kahneman, D. (2001). Do frequency representations eliminate conjunction effects? An exercise in adversarial collaboration. Psychological Science, 12, 269–275.

    Article  Google Scholar 

  • Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part I. Basic mechanisms. Psychological Review, 104, 3–65.

    Article  Google Scholar 

  • Mischel, W. (2008). The toothbrush problem. Observer. Retrieved December 09, 2016, from http://www.psychologicalscience.org/observer/the-toothbrush-problem

  • Nellen, S. (2003). The use of the “take-the-best” heuristic under different conditions, modeled with ACT-R. In F. Detje, D. Dörner, & H. Schaub (Eds.), Proceedings of the fifth international conference on cognitive modeling (pp. 171–176). Bamberg: Universitätsverlag Bamberg.

    Google Scholar 

  • Newell, A. (1990). Unified theories of cognition. Harvard University Press.

    Google Scholar 

  • Newell, A. (1992). Soar as a unified theory of cognition: Issues and explanations. Behavioral and Brain Sciences, 15, 464–492.

    Article  Google Scholar 

  • Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among computational models of cognition. Psychological Review, 109, 472–491.

    Article  Google Scholar 

  • Pohl, R. F. (2011). On the use of recognition in inferential decision making: An overview of the debate. Judgment and Decision making, 6, 423–438.

    Google Scholar 

  • Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111, 333–367.

    Article  Google Scholar 

  • Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107, 358–367.

    Article  Google Scholar 

  • Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human Factors, 48, 362–380.

    Article  Google Scholar 

  • Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent multitasking. Psychological Review, 115, 101–130.

    Article  Google Scholar 

  • Samuels, R., Stich, S., & Bishop, M. (2002). Ending the rationality wars: How to make disputes about human rationality disappear. In R. Elio (Ed.), Common sense, reasoning and rationality (pp. 236–268). New York, NY: Oxford University Press.

    Chapter  Google Scholar 

  • Scherer, K. R. (2001). Appraisal considered as a process of multilevel sequential checking. In K. R. Scherer, A. Schorr, & T. Johnstone (Eds.), Appraisal processes in emotion: Theory, methods, research (pp. 92–120). New York and Oxford: Oxford University Press.

    Google Scholar 

  • Schneider, D. W., & Anderson, J. R. (2012). Modeling fan effects on the time course of associative recognition. Cognitive Psychology, 64, 127–160.

    Article  Google Scholar 

  • Schooler, L. J., & Hertwig, R. (2005). How forgetting aids heuristic inference. Psychological Review, 112, 610–628.

    Article  Google Scholar 

  • Spiliopoulos, L. (2013). Beyond fictitious play beliefs: Incorporating pattern recognition and similarity matching. Games and Economic Behavior, 81, 69–85.

    Article  Google Scholar 

  • Taatgen, N. A., Van Rijn, H., & Anderson, J. (2007). An integrated theory of prospective time interval estimation: The role of cognition, attention, and learning. Psychological Review, 114, 577–598.

    Article  Google Scholar 

  • Thomas, R. P., Dougherty, M. R., Sprenger, A. M., & Harbison, J. (2008). Diagnostic hypothesis generation and human judgment. Psychological Review, 115, 155–185.

    Article  Google Scholar 

  • Thomson, R., Lebiere, C., Anderson, J. R., & Staszewski, J. (2015). A general instance-based learning framework for studying intuitive decision making in a cognitive architecture. Journal of Applied Research in Memory and Cognition, 4, 180–190.

    Article  Google Scholar 

  • Todd, P. M., & Gigerenzer, G. (2007). Environments that make us smart: Ecological rationality. Current Directions in Psychological Science, 16, 167–171.

    Article  Google Scholar 

  • Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79, 281–299.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207–232.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131.

    Article  Google Scholar 

  • Willemsen, M. C., & Johnson, E. J. (2016). MouselabWEB: Monitoring information acquisition processes on the Web. Retrieved December 7th, 2016, from http://www.mouselabweb.org/

  • Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel: The psychological refractory period and perfect time-sharing. Psychological Review, 108, 847-869.

    Article  Google Scholar 

  • Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-based learning in dynamic decision making. Cognitive Science, 27, 591-635.

    Article  Google Scholar 

Download references

Acknowledgments

This chapter is embedded into Swiss National Science Foundation grant 100014_146702, on which also part of the chapter’s write-up is based. We would like to thank Piotr Patrzyk for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cvetomir M. Dimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dimov, C.M., Marewski, J.N. (2018). Cognitive Architectures as Scaffolding for Risky Choice Models. In: Raue, M., Lermer, E., Streicher, B. (eds) Psychological Perspectives on Risk and Risk Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-92478-6_9

Download citation

Publish with us

Policies and ethics