Abstract
Reducing and shifting energy consumption could contribute significantly to a more sustainable use of energy in households. Studies have shown that the provision of feedback can encourage consumers to use energy more sustainably. While there is wide variety of energy feedback solutions ranging from in-home displays to mobile applications, there is a lack of research on whether and how conversational agents can provide energy feedback to promote sustainable energy use. As conversational agents, such as chatbots, promise a natural and intuitive user interface, they may have great potential for energy feedback. This paper explores how to design conversational agents for energy feedback and proposes design principles based on existing literature. The design principles are instantiated in a text-based conversational agent and evaluated in a focus group session with industry experts. We contribute with valuable design knowledge that extends previous research on the design of energy feedback solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
International Energy Agency: World Energy Investment (2017). https://www.iea.org/publications/wei2017/. Accessed 28 Jan 2018
European Commission: 2050 Low-Carbon Economy Roadmap (2017). https://ec.europa.eu/clima/policies/strategies/2050_en. Accessed 15 Jan 2018
Kobus, C.B.A., Mugge, R., Schoormans, J.P.L.: Washing when the sun is shining! How users interact with a household energy management system. Ergonomics 56, 451–462 (2013)
Karlin, B., Zinger, J.F., Ford, R.: The effects of feedback on energy conservation: a meta-analysis. Psychol. Bull. 141, 1205–1227 (2015)
Karlin, B., Ford, R., Squiers, C.: Energy feedback technology: a review and taxonomy of products and platforms. Energy Effi. 7, 377–399 (2014)
Weiss, M., Helfenstein, A., Mattern, F., Staake, T.: Leveraging smart meter data to recognize home appliances. In: 2012 IEEE International Conference on Pervasive Computing and Communications, pp. 190–197. IEEE (2012)
Pullinger, M., Lovell, H., Webb, J.: Influencing household energy practices: a critical review of UK smart metering standards and commercial feedback devices. Technol. Anal. Strateg. Manag. 26, 1144–1162 (2014)
McTear, M., Callejas, Z., Griol, D.: The Conversational Interface: Talking to Smart Devices. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-32967-3
Dale, R.: The return of the chatbots. Nat. Lang. Eng. 22, 811–817 (2016)
Gartner: Top Trends in the Gartner Hype Cycle for Emerging Technologies (2017). https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/. Accessed 20 Dec 2017
Bourgeois, J., Van Der Linden, J., Kortuem, G., Price, B.A., Rimmer, C.: Conversations with my washing machine: an in-the-wild study of demand-shifting with self-generated energy. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 459–470 (2014)
Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)
Tremblay, M.C., Hevner, A.R., Berndt, D.J.: Focus groups for artifact refinement and evaluation in design research. Commun. Assoc. Inf. Syst. 26, 599–618 (2010)
Kluger, A.N., DeNisi, A.: The effects of feedback interventions on performance: a historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychol. Bull. 119, 254–284 (1996)
Sanguinetti, A., Dombrovski, K., Sikand, S.: Information, timing, and display: a design-behavior framework for improving the effectiveness of eco-feedback. Energy Res. Soc. Sci. 39, 55–68 (2018)
Dalén, A., Krämer, J.: Towards a user-centered feedback design for smart meter interfaces to support efficient energy-use choices. Bus. Inf. Syst. Eng. 59, 361–373 (2017)
Froehlich, J.: Promoting energy efficient behaviors in the home through feedback: the role of human-computer interaction. In: Proceedings of the HCIC Workshop (2009)
Weiss, M., Staake, T., Mattern, F., Fleisch, E.: Powerpedia - changing energy usage with the help of a smartphone application. Pers. Ubiquit. Comput. 16, 655–664 (2012)
Gnewuch, U., Morana, S., Maedche, A.: Towards designing cooperative and social conversational agents for customer service. In: Proceedings of the 38th International Conference on Information Systems (ICIS), Seoul, South Korea (2017)
Weizenbaum, J.: ELIZA - a computer program for the study of natural language communication between man and machine. Commun. ACM 9, 36–45 (1966)
Maedche, A., Morana, S., Schacht, S., Werth, D., Krumeich, J.: Advanced user assistance systems. Bus. Inf. Syst. Eng. 58, 367–370 (2016)
Beale, R., Creed, C.: Affective interaction: how emotional agents affect users. Int. J. Hum. Comput. Stud. 67, 755–776 (2009)
Bickmore, T., Cassell, J.: Relational agents: a model and implementation of building user trust. In: Proceedings of the 2001 SIGCHI Conference on Human Factors in Computing Systems (2001)
Kuechler, B., Vaishnavi, V.: Theory development in design science research: anatomy of a research project. Eur. J. Inf. Syst. 17, 489–504 (2008)
Gall, M.: BotPreview.com (2018). https://botpreview.com/. Accessed 28 Jan 2018
Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016)
Miller, W., Senadeera, M.: Social transition from energy consumers to prosumers: rethinking the purpose and functionality of eco-feedback technologies. Sustain. Cities Soc. 35, 615–625 (2017)
Watson, A., Viney, H., Schomaker, P.: Consumer attitudes to utility products: a consumer behaviour perspective. Mark. Intell. Plan. 20, 394–404 (2002)
Morana, S., Schacht, S., Scherp, A., Maedche, A.: A review of the nature and effects of guidance design features. Decis. Support Syst. 97, 31–42 (2017)
Sarikaya, R.: The technology behind personal digital assistants: an overview of the system architecture and key components. IEEE Sig. Process. Mag. 34, 67–81 (2017)
Tiefenbeck, V., Goette, L., Degen, K., Tasic, V., Fleisch, E., Lalive, R., Staake, T.: Overcoming salience bias: how real-time feedback fosters resource conservation. Manage. Sci. 64(3), 1458–1476 (2018). https://doi.org/10.1287/mnsc.2016.2646
Fogg, B.J.: Computers as persuasive social actors. In: Persuasive Technology: Using Computers to Change What We Think and Do, pp. 89–120. Morgan Kaufmann Publishers, San Francisco (2002)
Nass, C., Steuer, J., Tauber, E.R.: Computers are social actors. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, pp. 72–78 (1994)
Ham, J., Midden, C.J.H.: A persuasive robot to stimulate energy conservation: the influence of positive and negative social feedback and task similarity on energy-consumption behavior. Int. J. Soc. Robot. 6, 163–171 (2014)
Statista Number of mobile phone messaging app users worldwide from 2016 to 2021 (2018). https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide/. Accessed 28 Jan 2018
Easwara Moorthy, A., Vu, K.P.L.: Privacy concerns for use of voice activated personal assistant in the public space. Int. J. Hum. Comput. Interact. 31, 307–335 (2015)
Appel, J., von der Pütten, A., Krämer, N.C., Gratch, J.: Does humanity matter? Analyzing the importance of social cues and perceived agency of a computer system for the emergence of social reactions during human-computer interaction. Adv. Hum.-Comput. Interact. 2012, 1–10 (2012)
Klopfenstein, L.C., Delpriori, S., Malatini, S., Bogliolo, A.: The rise of bots: a survey of conversational interfaces, patterns, and paradigms. In: Proceedings of the 2017 Conference on Designing Interactive Systems, pp. 555–565 (2017)
Tremblay, M.C., Hevner, A.R., Berndt, D.J.: The use of focus groups in design science research. In: Hevner, A., Chatterjee, S. (eds.) Integrated Series in Information Systems. Design Research in Information Systems, pp. 121–143. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-5653-8_10
Morana, S., Schacht, S., Scherp, A., Maedche, A.: Designing a process guidance system to support user’s business process compliance. In: ICIS 2014 Proceedings, pp. 1–19 (2014)
Zheng, G., Vaishnavi, V.K.: A multidimensional perceptual map approach to project prioritization and selection. AIS Trans. Hum.-Comput. Interact. 3, 82–103 (2011)
Snow, S., Buys, L., Roe, P., Brereton, M.: Curiosity to cupboard: self reported disengagement with energy use feedback over time. In: Proceedings of the 25th Australian Computer-Human Interaction Conference, pp. 245–254 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Gnewuch, U., Morana, S., Heckmann, C., Maedche, A. (2018). Designing Conversational Agents for Energy Feedback. In: Chatterjee, S., Dutta, K., Sundarraj, R. (eds) Designing for a Digital and Globalized World. DESRIST 2018. Lecture Notes in Computer Science(), vol 10844. Springer, Cham. https://doi.org/10.1007/978-3-319-91800-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-91800-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91799-3
Online ISBN: 978-3-319-91800-6
eBook Packages: Computer ScienceComputer Science (R0)