Skip to main content

The Feedback Loop Between Aboveground Herbivores and Soil Microbes via Deposition Processes

  • Chapter
  • First Online:
Aboveground–Belowground Community Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 234))

Abstract

Many studies on herbivores are solely concerned with the damage that they cause to plants. However, the impacts of aboveground herbivores go further, as their additions to the soil affect the soil microbes and subsequently nutrient cycling that feeds back into aboveground production. This chapter focuses on the feedback loop beginning with inputs via invertebrate herbivores and leading to alteration of carbon (C) and nitrogen (N) cycling via soil microbes to change nutrient availability for the surrounding vegetation. This loop eventually leads back to affect the invertebrate herbivores through changes in vegetation. Inputs from invertebrate herbivores can result physically from the invertebrates (e.g., frass, honeydew, carcasses) or from their consumption of vegetation (e.g., impacts on quality of throughfall, litterfall). The consumption activity can also alter the timing, quantity, and quality of organic inputs to the soil, all of which will affect the soil microbial communities in different ways depending on their lability. That lability also drives changes in C and N cycling, altering the available nutrients within the soil. The goal of this chapter is to discuss the feedback loop described above and develop a greater understanding of how aboveground herbivores interact with the belowground microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarssen LW (1995) Hypotheses for the evolution of apical dominance in plants: implications for the interpretation of overcompensation. Oikos 74:149–156. https://doi.org/10.2307/3545684

    Article  Google Scholar 

  • Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J Wildl Manage 62:1165–1183

    Article  Google Scholar 

  • Bakker ES, Ritchie ME, Olff H et al (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9:780–788

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x

    Article  Google Scholar 

  • Bardgett RD, Streeter TC, Bol R (2003) Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84:1277–1287

    Article  Google Scholar 

  • Barton BT (2010) Climate warming and predation risk during herbivore ontogeny. Ecology 91:2811–2818

    Article  Google Scholar 

  • Bauerfeind SS, Fischer K (2013) Increased temperature reduces herbivore host-plant quality. Glob Chang Biol 19:3272–3282

    PubMed  Google Scholar 

  • Bentz BJ, RĂ©gnière J, Fettig CJ et al (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60:602–613

    Article  Google Scholar 

  • Bi J, Ballmer G, Hendrix D et al (2001) Effect of cotton nitrogen fertilization on Bemisia argentifolii populations and honeydew production. Entomol Exp Appl 99:25–36

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–U132. https://doi.org/10.1038/nature08930

    Article  CAS  PubMed  Google Scholar 

  • Bradley R, Titus B, Preston C (2000) Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH 4) 2 SO 4 and condensed tannins extracted from Kalmia angustifolia and balsam fir. Soil Biol Biochem 32:1227–1240

    Article  CAS  Google Scholar 

  • Brown J, Chippendale G (1973) Nature and fate of the nutrient reserves of the periodical (17 year) cicada. J Insect Physiol 19:607–614

    Article  CAS  Google Scholar 

  • Bultman H, Hoekman D, Dreyer J et al (2014) Terrestrial deposition of aquatic insects increases plant quality for insect herbivores and herbivore density. Ecol Entomol 39:419–426

    Article  Google Scholar 

  • Cannon RJ (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob Chang Biol 4:785–796

    Article  Google Scholar 

  • Chapman SK, Hart SC, Cobb NS et al (2003) Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84:2867–2876

    Article  Google Scholar 

  • Chapman SK, Whitham TG, Powell M (2006) Herbivory differentially alters plant litter dynamics of evergreen and deciduous trees. Oikos 114:566–574

    Article  Google Scholar 

  • Chomel M, Fernandez C, Bousquet-MĂ©lou A et al (2014) Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J Ecol 102:411–424

    Article  Google Scholar 

  • Chomel M, Guittonny-LarchevĂŞque M, Fernandez C et al (2016) Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J Ecol 104:1527–1541

    Article  Google Scholar 

  • Choudhury D (1984) Aphids and plant fitness: a test of Owen and Wiegert’s hypothesis. Oikos 43:401–402

    Article  Google Scholar 

  • Christenson LM, Lovett GM, Mitchell MJ et al (2002) The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131:444–452

    Article  Google Scholar 

  • Classen AT, Hart SC, Whitman T et al (2005) Insect infestations linked to shifts in microclimate. Soil Sci Soc Am J 69:2049–2057

    Article  CAS  Google Scholar 

  • Couture JJ, Lindroth RL (2014) Atmospheric change alters frass quality of forest canopy herbivores. Arthropod-Plant Interact 8:33–47

    Article  Google Scholar 

  • Creeden EP, Hicke JA, Buotte PC (2014) Climate, weather, and recent mountain pine beetle outbreaks in the western United States. For Ecol Manage 312:239–251

    Article  Google Scholar 

  • Cudmore TJ, Björklund N, Carroll AL et al (2010) Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naĂŻve host tree populations. J Appl Ecol 47:1036–1043

    Article  Google Scholar 

  • Denton CS, Bardgett RD, Cook R et al (1998) Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biol Biochem 31:155–165

    Article  Google Scholar 

  • DĂ­az S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Dighton J (1978) Effects of synthetic lime aphid honeydew on populations of soil organisms. Soil Biol Biochem 10:369–376

    Article  Google Scholar 

  • Eaton JS, Likens GE, Bormann FH (1973) Throughfall and stemflow chemistry in a northern hardwood forest. J Ecol 61:495–508

    Article  CAS  Google Scholar 

  • Fielding DJ, Trainor E, Zhang M (2013) Diet influences rates of carbon and nitrogen mineralization from decomposing grasshopper frass and cadavers. Biol Fertil Soils 49:537–544

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP, Cates RG et al (2001) Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils. Soil Biol Biochem 33:1827–1839

    Article  CAS  Google Scholar 

  • Findlay S, Carreiro M, Krischik V et al (1996) Effects of damage to living plants on leaf litter quality. Ecol Appl 6:269–275

    Article  Google Scholar 

  • Fischer M, Shingleton A (2001) Host plant and ants influence the honeydew sugar composition of aphids. Funct Ecol 15:544–550

    Article  Google Scholar 

  • Fogal W, Slansky F Jr (1985) Contribution of feeding by European pine sawfly larvae to litter production and element flux in scots pine plantations. Can J For Res 15:484–487

    Article  Google Scholar 

  • Fonte SJ, Schowalter TD (2004) Decomposition of greenfall vs. senescent foliage in a tropical forest ecosystem in Puerto Rico. Biotropica 36:474–482

    Article  Google Scholar 

  • Fonte S, Schowalter T (2005) The influence of a neotropical herbivore (Lamponius portoricensis) on nutrient cycling and soil processes. Oecologia 146:423–431

    Article  CAS  Google Scholar 

  • Frost CJ, Hunter MD (2004) Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85:3335–3347

    Article  Google Scholar 

  • Frost CJ, Hunter MD (2007) Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia 151:42–53

    Article  Google Scholar 

  • Gehring CA, Whitham TG (2002) Mycorrhizae-herbivore interactions: population and community consequences. Mycorrhizal ecology. Springer, New York, pp 295–320

    Google Scholar 

  • Gherlenda AN, Crous KY, Moore BD et al (2016) Precipitation, not CO2 enrichment, drives insect herbivore frass deposition and subsequent nutrient dynamics in a mature Eucalyptus woodland. Plant Soil 399:29–39

    Article  CAS  Google Scholar 

  • Grace J (1986) The influence of gypsy moth on the composition and nutrient content of litter fall in a Pennsylvania oak forest. For Sci 32:855–870

    Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1990) Abridged comparative plant ecology. Springer, New York

    Google Scholar 

  • Guitian R, Bardgett RD (2000) Plant and soil microbial responses to defoliation in temperate semi-natural grassland. Plant Soil 220:271–277

    Article  CAS  Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402

    Article  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  Google Scholar 

  • Hawlena D, Strickland MS, Bradford MA et al (2012) Fear of predation slows plant-litter decomposition. Science 336:1434–1438

    Article  CAS  Google Scholar 

  • Hoekman D, Dreyer J, Jackson RD et al (2011) Lake to land subsidies: experimental addition of aquatic insects increases terrestrial arthropod densities. Ecology 92:2063–2072

    Article  Google Scholar 

  • Holland EA, Detling JK (1990) Plant response to herbivory and belowground nitrogen cycling. Ecology 71:1040–1049

    Article  Google Scholar 

  • Hunter MD (2001) Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric For Entomol 3:77–84

    Article  Google Scholar 

  • Hunter MD, Linnen CR, Reynolds BC (2003) Effects of endemic densities of canopy herbivores on nutrient dynamics along a gradient in elevation in the southern Appalachians. Pedobiologia 47:231–244

    Article  Google Scholar 

  • Kagata H, Ohgushi T (2012) Non-additive effects of leaf litter and insect frass mixture on decomposition processes. Ecol Res 27:69–75

    Article  Google Scholar 

  • Katayama N, Tsuchida T, Hojo M et al (2013) Aphid genotype determines intensity of ant attendance: do endosymbionts and honeydew composition matter? Ann Entomol Soc Am 106:761–770

    Article  CAS  Google Scholar 

  • Katayama N, Silva AO, Kishida O et al (2014) Herbivorous insect decreases plant nutrient uptake: the role of soil nutrient availability and association of below-ground symbionts. Ecol Entomol 39:511–518

    Article  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143

    Article  CAS  Google Scholar 

  • Kimmins J (1972) Relative contributions of leaching, litter-fall and defoliation by Neodiprion sertifer (Hymenoptera) to the removal of cesium-134 from red pine. Oikos 23:226–234

    Article  Google Scholar 

  • Kozlov MV (2008) Losses of birch foliage due to insect herbivory along geographical gradients in Europe: a climate-driven pattern? Clim Change 87:107–117

    Article  Google Scholar 

  • Kraus TE, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems-a review. Plant Soil 256:41–66

    Article  CAS  Google Scholar 

  • Le Mellec A, Michalzik B (2008) Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany. Can J For Res 38:1829–1841

    Google Scholar 

  • Le Mellec A, Gerold G, Michalzik B (2011) Insect herbivory, organic matter deposition and effects on belowground organic matter fluxes in a central European oak forest. Plant Soil 342:393–403

    Article  CAS  Google Scholar 

  • Lemoine NP, Burkepile DE, Parker JD (2014) Variable effects of temperature on insect herbivory. PeerJ 2:e376

    Article  Google Scholar 

  • Li Q, Zhou BZ, Wang XM et al (2013) Effects of throughfall exclusion on soil respiration in a Moso Bamboo Forest Soil in Southeast China. In: Advanced materials research. Trans Tech, ZĂĽrich, pp 3762–3766

    Google Scholar 

  • Liu Y, Liu S, Wan S et al (2016) Differential responses of soil respiration to soil warming and experimental throughfall reduction in a transitional oak forest in central China. Agric For Meteorol 226:186–198

    Article  Google Scholar 

  • Lodge DJ, Scatena F, Asbury C et al (1991) Fine litterfall and related nutrient inputs resulting from Hurricane Hugo in subtropical wet and lower montane rain forests of Puerto Rico. Biotropica 23:336–342

    Article  Google Scholar 

  • Lovett GM, Ruesink AE (1995) Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104:133–138

    Article  Google Scholar 

  • Lovett GM, Christenson LM, Groffman PM et al (2002) Insect defoliation and nitrogen cycling in forests: laboratory, plot, and watershed studies indicate that most of the nitrogen released from forest foliage as a result of defoliation by insects is redistributed within the ecosystem, whereas only a small fraction of nitrogen is lost by leaching. Bioscience 52:335–341

    Article  Google Scholar 

  • Madritch MD, Lindroth RL (2015) Condensed tannins increase nitrogen recovery by trees following insect defoliation. New Phytol 208:410–420

    Article  CAS  Google Scholar 

  • McNaughton S, Ruess R, Seagle S (1988) Large mammals and process dynamics in African ecosystems. Bioscience 38:794–800

    Article  Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA et al (1989) Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–144

    Article  CAS  Google Scholar 

  • Michalzik B, Levia DF, Bischoff S et al (2016) Effects of aphid infestation on the biogeochemistry of the water routed through European beech (Fagus sylvatica L.) saplings. Biogeochemistry 129:197–214

    Article  CAS  Google Scholar 

  • Mikola J, Yeates GW, Barker GM et al (2001) Effects of defoliation intensity on soil food-web properties in an experimental grassland community. Oikos 92:333–343

    Article  Google Scholar 

  • Mikola J, Setälä H, Virkajärvi P et al (2009) Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol Monogr 79:221–244

    Article  Google Scholar 

  • Milcu A, Bonkowski M, Collins CM et al (2015) Aphid honeydew-induced changes in soil biota can cascade up to tree crown architecture. Pedobiologia 58:119–127

    Article  Google Scholar 

  • Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trends Ecol Evol 13:261–265

    Article  CAS  Google Scholar 

  • Ormeno E, Baldy V, Ballini C et al (2006) Effects of environmental factors and leaf chemistry on leaf litter colonization by fungi in a Mediterranean shrubland. Pedobiologia 50:1–10

    Article  CAS  Google Scholar 

  • Pastor J, Naiman RJ, Dewey B et al (1988) Moose, microbes, and the boreal forest. Bioscience 38:770–777

    Article  Google Scholar 

  • Patterson D, Westbrook J, Joyce R et al (1999) Weeds, insects, and diseases. Clim Change 43:711–727

    Article  CAS  Google Scholar 

  • Reynolds B, Hunter M (2001) Responses of soil respiration, soil nutrients, and litter decomposition to inputs from canopy herbivores. Soil Biol Biochem 33:1641–1652

    Article  CAS  Google Scholar 

  • Reynolds BC, Hunter MD, Crossley D Jr (2000) Effects of canopy herbivory on nutrient cycling in a northern hardwood forest in western North Carolina. Selbyana 21:74–78

    Google Scholar 

  • Risch AC, SchĂĽtz M, Vandegehuchte ML et al (2015) Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands. Ecology 96:3312–3322

    Article  Google Scholar 

  • Risley LS, Crossley D Jr (1993) Contribution of herbivore-caused greenfall to litterfall nitrogen flux in several southern Appalachian forested watersheds. Am Midl Nat 129:67–74

    Article  Google Scholar 

  • Ritchie ME, Tilman D, Knops JM (1998) Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79:165–177

    Article  Google Scholar 

  • Ruijven J, De Deyn GB, Raaijmakers CE et al (2005) Interactions between spatially separated herbivores indirectly alter plant diversity. Ecol Lett 8:30–37

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schimel JP, Van Cleve K, Cates RG et al (1996) Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during succession. Can J Bot 74:84–90

    Article  CAS  Google Scholar 

  • Schmidt IK, Michelsen A, Jonasson S (1997) Effects of labile soil carbon on nutrient partitioning between an arctic graminoid and microbes. Oecologia 112:557–565

    Article  Google Scholar 

  • Schofield P, Mbugua D, Pell A (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91:21–40

    Article  CAS  Google Scholar 

  • Schowalter T, Crossley D (1983) Forest canopy arthropods as sodium, potassium, magnesium and calcium pools in forests. For Ecol Manage 7:143–148

    Article  CAS  Google Scholar 

  • Schowalter T, Sabin T, Stafford S et al (1991) Phytophage effects on primary production, nutrient turnover, and litter decomposition of young Douglas-fir in western Oregon. For Ecol Manage 42:229–243

    Article  Google Scholar 

  • Schowalter T, Fonte SJ, Geaghan J et al (2011) Effects of manipulated herbivore inputs on nutrient flux and decomposition in a tropical rainforest in Puerto Rico. Oecologia 167:1141–1149

    Article  CAS  Google Scholar 

  • Schweitzer JA, Madritch MD, Bailey JK et al (2008) From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11:1005–1020

    Article  CAS  Google Scholar 

  • Seastedt T, Mameli L, Gridley K (1981) Arthropod use of invertebrate carrion. Am Midl Nat 105:124–129

    Article  Google Scholar 

  • Song J, Wu D, Shao P et al (2015) Ecosystem carbon exchange in response to locust outbreaks in a temperate steppe. Oecologia 178:579–590

    Article  Google Scholar 

  • Stadler B, MĂĽller T (1996) Aphid honeydew and its effect on the phyllosphere microflora of Picea abies (L.) Karst. Oecologia 108:771–776

    Article  Google Scholar 

  • Stadler B, Michalzik B, MĂĽller T (1998) Linking aphid ecology with nutrient fluxes in a coniferous forest. Ecology 79:1514–1525

    Article  Google Scholar 

  • Stadler B, MĂĽller T, Sheppard L et al (2001) Effects of Elatobium abietinum on nutrient fluxes in Sitka spruce canopies receiving elevated nitrogen and sulphur deposition. Agric For Entomol 3:253–261

    Article  Google Scholar 

  • Swank W, Waide J, Crossley D et al (1981) Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51:297–299

    Article  CAS  Google Scholar 

  • Vanhanen H, Veteli TO, Paivinen S et al (2007) Climate change and range shifts in two insect defoliators: gypsy moth and nun moth-a model study. Silva Fenn 41:621

    Article  Google Scholar 

  • Wardle DA, Bardgett RD (2004) Indirect effects of invertebrate herbivory on the decomposer subsystem. In: Weisser W, Siemann E (eds) Insects and ecosystem function. Springer, Heidelberg, pp 53–69

    Google Scholar 

  • Wardle D, Bonner K, Barker G (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595

    Article  Google Scholar 

  • Whiles MR, Callaham MA Jr, Meyer CK et al (2001) Emergence of periodical cicadas (Magicicada cassini) from a Kansas riparian forest: densities, biomass and nitrogen flux. Am Midl Nat 145:176–187

    Google Scholar 

  • Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306:1565–1567

    Article  CAS  Google Scholar 

  • Yang LH (2006) Interactions between a detrital resource pulse and a detritivore community. Oecologia 147:522–532

    Article  Google Scholar 

  • Zvereva EL, Lanta V, Kozlov MV (2010) Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia 163:949–960

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon L. Pelini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ritzenthaler, C.A., Maloney, C.E., Maran, A.M., Moore, E.A., Winters, A., Pelini, S.L. (2018). The Feedback Loop Between Aboveground Herbivores and Soil Microbes via Deposition Processes. In: Ohgushi, T., Wurst, S., Johnson, S. (eds) Aboveground–Belowground Community Ecology. Ecological Studies, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-91614-9_9

Download citation

Publish with us

Policies and ethics