Skip to main content

Functional Lifting for Variational Problems with Higher-Order Regularization

  • Conference paper
  • First Online:
Imaging, Vision and Learning Based on Optimization and PDEs (IVLOPDE 2016)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Variational approaches are an established paradigm in the field of image processing . The non-convexity of the functional can be addressed by functional lifting and convex relaxation techniques, which aim to solve a convex approximation of the original energy on a larger space. However, so far these approaches have been limited to first-order , gradient-based regularizers such as the total variation . In this work, we propose a way to extend functional lifting to a second-order regularizer derived from the Laplacian. We prove that it can be represented efficiently and thus allows numerical optimization. We experimentally demonstrate the usefulness on a synthetic convex denoising problem and on synthetic as well as real-world image registration problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [28] and http://github.com/tum-vision/prost for the most recent version.

References

  1. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems (Clarendon Press, Oxford, 2000)

    MATH  Google Scholar 

  2. K. Bredies, K. Kunisch, T. Pock, Total generalized variation. J. Imag. Sci. 3(3), 294–526 (2010)

    MathSciNet  MATH  Google Scholar 

  3. T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, in European Conference on Computer Vision (Springer, Berlin, 2004), pp. 25–36

    MATH  Google Scholar 

  4. A. Chambolle, An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  5. A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  6. A. Chambolle, D. Cremers, T. Pock, A convex approach to minimal partitions. J. Imag. Sci. 5(4), 1113–1158 (2012)

    Article  MathSciNet  Google Scholar 

  7. T. Chan, A. Marquina, P. Mulet, Higher-order total variation-based image restoration. J. Sci. Comput. 22(2), 503–516 (2000)

    MathSciNet  MATH  Google Scholar 

  8. T. Chan, S. Esedoḡlu, F. Park, A. Yip, Total variation image restoration: overview and recent developments, in The Handbook of Mathematical Models in Computer Vision (Springer, Berlin, 2005)

    Google Scholar 

  9. F. Demengel, Fonctions à Hessien borné. Ann. Inst. Fourier 34, 155–190 (1985)

    Article  Google Scholar 

  10. B. Fischer, J. Modersitzki, Curvature based image registration. J. Math. Imag. Vis. 18(1), 81–85 (2003)

    Article  MathSciNet  Google Scholar 

  11. W.J. Fu, Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Stat. 7(3), 397–416 (1998)

    MathSciNet  Google Scholar 

  12. M. Grant, S. Boyd, Graph implementations for nonsmooth convex programs, in Recent Advances in Learning and Control (Springer, Berlin, 2008), pp. 95–110

    Book  Google Scholar 

  13. M. Grant, S. Boyd, CVX: matlab software for disciplined convex programming (2014). http://cvxr.com/cvx

  14. S. Henn, A full curvature based algorithm for image registration. J. Math. Imag. Vis. 24(2), 195–208 (2006)

    Article  MathSciNet  Google Scholar 

  15. W. Hinterberger, O. Scherzer, Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1), 109–133 (2006)

    Article  MathSciNet  Google Scholar 

  16. B.K.P. Horn, B.G. Schunck, Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  17. H. Ishikawa, Exact optimization for Markov random fields with convex priors. Pattern. Anal. Mach. Intell. 25(10), 1333–1336 (2003)

    Article  Google Scholar 

  18. E. Laude, T. Möllenhoff, M. Moeller, J. Lellmann, D. Cremers, Sublabel-accurate convex relaxation of vectorial multilabel energies, in European Conference on Computer Vision (Springer, Berlin, 2016), pp. 614–627

    Google Scholar 

  19. J. Lellmann, C. Schnörr, Continuous multiclass labeling approaches and algorithms. SIAM J. Imag. Sci. 4(4), 1049–1096 (2011)

    Article  MathSciNet  Google Scholar 

  20. J. Lellmann, J. Kappes, J. Yuan, F. Becker, C. Schnörr, Convex multi-class image labeling by simplex-constrained total variation, in Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 5567 (2009), pp. 150–162

    Google Scholar 

  21. J. Lellmann, E. Strekalovskiy, S. Koetter, D. Cremers, Total variation regularization for functions with values in a manifold, in International Conference on Computer Vision (2013), pp. 2944–2951

    Google Scholar 

  22. M. Lysaker, X.C. Tai, Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66(1), 5–18 (2006)

    Article  Google Scholar 

  23. M. Lysaker, A. Lundervold, X.C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  Google Scholar 

  24. J. Modersitzki, Numerical Methods for Image Registration (Oxford University Press on Demand, Oxford, 2004)

    MATH  Google Scholar 

  25. J. Modersitzki, FAIR: Flexible Algorithms for Image Registration (SIAM, Philadelphia, 2009)

    Book  Google Scholar 

  26. T. Möllenhoff, E. Strekalovskiy, M. Moeller, D. Cremers, The primal-dual hybrid gradient method for semiconvex splittings. SIAM J. Imag. Sci. 8(2), 827–857 (2015)

    Article  MathSciNet  Google Scholar 

  27. T. Möllenhoff, E. Strekalovskiy, M. Möller, D. Cremers, Low rank priors for color image regularization, in International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (Springer, Berlin, 2015), pp. 126–140

    Google Scholar 

  28. T. Möllenhoff, E. Laude, M. Moeller, J. Lellmann, D. Cremers, Sublabel-accurate relaxation of nonconvex energies, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 3948–3956

    Google Scholar 

  29. M. Nikolova, Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model. Simul. 4(3), 960–991 (2005)

    Article  MathSciNet  Google Scholar 

  30. J. Nocedal, S.J. Wright, Numerical Optimization (Springer, Berlin, 2006)

    MATH  Google Scholar 

  31. K. Papafitsoros, C.B. Schönlieb, A combined first and second order variational approach for image reconstruction. J. Math. Imag. Vision 48(2), 308–338 (2014)

    Article  MathSciNet  Google Scholar 

  32. T. Pock, A. Chambolle, D. Cremers, H. Bischof, A convex relaxation approach for computing minimal partitions, in Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  33. T. Pock, D. Cremers, H. Bischof, A. Chambolle, Global solutions of variational models with convex regularization. J. Imag. Sci. 3(4), 1122–1145 (2010)

    Article  MathSciNet  Google Scholar 

  34. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)

    Book  Google Scholar 

  35. L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  36. S. Setzer, G. Steidl, T. Teuber, Infimal convolution regularizations with discrete l1-type functionals. Commun. Math. Sci 9(3), 797–872 (2011)

    Article  MathSciNet  Google Scholar 

  37. P. Suquet, Existence et régularité des solutions des équations de la plasticité parfaite. C. R. Acad. Sci. Paris, Ser. A 286, 1201–1204 (1978)

    Google Scholar 

  38. J. Yuan, E. Bae, X.C. Tai, Y. Boykov, A continuous max-flow approach to Potts model, in European Conference on Computer Vision (2010), pp. 379–392

    Google Scholar 

  39. C. Zach, D. Gallup, J.M. Frahm, M. Niethammer, Fast global labeling for real-time stereo using multiple plane sweeps, in Vision, Modeling, and Visualization (2008)

    Google Scholar 

  40. C. Zach, C. Häne, M. Pollefeys, What is optimized in convex relaxations for multilabel problems: connecting discrete and continuously inspired map inference. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 157–170 (2014)

    Article  Google Scholar 

  41. W.P. Ziemer, Weakly Differentiable Functions (Springer, Berlin, 1989)

    Book  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—394737018 “Functional Lifting 2.0: Efficient Convexifications for Imaging and Vision”. We would like to thank Emanuel Laude and Thomas Möllenhoff for providing their library prost, which was used to solve the saddle-point formulation of the problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Lellmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loewenhauser, B., Lellmann, J. (2018). Functional Lifting for Variational Problems with Higher-Order Regularization. In: Tai, XC., Bae, E., Lysaker, M. (eds) Imaging, Vision and Learning Based on Optimization and PDEs. IVLOPDE 2016. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-91274-5_5

Download citation

Publish with us

Policies and ethics