Skip to main content

Myo-inositol Effects on the Developing Respiratory Neural Control System

  • Conference paper
  • First Online:
Arterial Chemoreceptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1071))

Abstract

Myo-inositol is a highly abundant stereoisomer of the inositol family of sugar alcohols and forms the structural basis for a variety of polyphosphate derivatives including second messengers and membrane phospholipids. These derivatives regulate numerous cell processes including gene transcription, membrane excitability, vesicular trafficking, intracellular calcium signaling, and neuronal growth and development. Myo-inositol can be formed endogenously from the breakdown of glucose, is found in a variety of foods including breastmilk and is commercially available as a nutritional supplement. Abnormal myo-inositol metabolism has been shown to underlie the pathophysiology of a variety of clinical conditions including Down Syndrome, traumatic brain injury, bronchopulmonary dysplasia (BPD), and respiratory distress syndrome (RDS). Several animal studies have shown that myo-inositol may play a critical role in development of both the central and peripheral respiratory neural control system; a notable example is the neonatal apnea and respiratory insufficiency that manifests in a mouse model of myo-inositol depletion, an effect that is also postnatally lethal. This review focuses on myo-inositol (and some of its derivatives) and how it may play a role in respiratory neural control; we also discuss clinical evidence demonstrating a link between serum myo-inositol levels and the incidence of intermittent hypoxemia (IH) events (a surrogate measure of apnea of prematurity (AOP)) in preterm infants. Further, there are both animal and human infant studies that have demonstrated respiratory benefits following supplementation with myo-inositol, which highlights the prospects that nutritional requirements are important for appropriate development and maturation of the respiratory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barraco RA, Phillis JW, Simpson LL (1989) Cardiorespiratory effects of inositol hexakisphosphate following microinjections into the nucleus tractus solitarii. Eur J Pharmacol 173(1):75–84

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylgycerol: two interacting second messengers. Ann Rev Biochem 56:159–193

    Article  CAS  PubMed  Google Scholar 

  • Berry GT, Mallee JJ, Kwon HM, Rim JS, Mulla WR, Muenke M, Spinner NB (1995) The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Genomics 25(2):507–513

    Article  CAS  PubMed  Google Scholar 

  • Berry GT, Wu S, Buccafusca R, Ren J, Gonzales LW, Ballard PL, Golden JA, Stevens MJ, Greer JJ (2003) Loss of murine Na+/myo-inositol cotransporter leads to brain myo-inositol depletion and central apnea. J Biol Chem 278(20):18297–18302

    Article  CAS  PubMed  Google Scholar 

  • Buccafusca R, Venditti CP, Kenyon LC, Johanson RA, Van Bockstaele E, Ren J, Pagliardini S, Minarcik J, Golden JA, Coady MJ, Greer JJ, Berry GT (2008) Characterization of the null murine sodium/myo-inositol cotransporter 1 (Smit1 or Slc5a3) phenotype: myo-inositol rescue is independent of expression of its cognate mitochondrial ribosomal protein subunit 6 (Mrps6) gene and of phosphatidylinositol levels in neonatal brain. Mol Genet Metab 95(1–2):81–95

    Article  CAS  PubMed  Google Scholar 

  • Chau JF, Lee MK, Law JW, Chung SK, Chung SS (2005) Sodium/myo-inositol cotransporter-1 is essential for the development and function of the peripheral nerves. FASEB J 19(13):1887–1889

    Article  CAS  PubMed  Google Scholar 

  • Chen J, He L, Dinger B, Fidone S (2000) Cellular mechanisms involved in rabbit carotid body excitation elicited by endothelin peptides. Respir Physiol 121(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Collins BM, McCoy AJ, Kent HM, Evans PR, Owen DJ (2002) Molecular architecture and functional model of the endocytic AP2 complex. Cell 109(4):523–535

    Article  CAS  PubMed  Google Scholar 

  • Conrad MS, Sutton BP, Larsen R, Van Alstine WG, Johnson RW (2015) Early postnatal respiratory viral infection induces structural and neurochemical changes in the neonatal piglet brain. Brain Behav Immun 48:326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA (2007) Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. J Physiol 582(Pt 3):1047–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Camilli P, Emr SD, McPherson PS, Novick P (1996) Phosphoinositides as regulators in membrane traffic. Science 271(5255):1533–1539

    Article  PubMed  Google Scholar 

  • Di Fiore JM, Bloom JN, Orge F, Schutt A, Schluchter M, Cheruvu VK, Walsh M, Finer N, Martin RJ (2010) A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr 157(1):69–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Fiore JM, Walsh M, Wrage L, Rich W, Finer N, Carlo WA, Martin RJ (2012) Support study group of Eunice Kennedy Shriver national institute of child health and human development neonatal research network. Low oxygen saturation target range is associated with increased incidence of intermittent hypoxemia. J Pediatr 161(6):1047–1052

    Article  PubMed  PubMed Central  Google Scholar 

  • Godfrey DA, Hallcher LM, Laird MH, Matschinsky FM, Sherman WR (1982) Distribution of myo-inositol in the cat cochlear nucleus. J Neurochem 38(4):939–947

    Article  CAS  PubMed  Google Scholar 

  • Greer JJ, Allan DW, Martin-Carabello M, Lemke RP (1999) An overview of phrenic nerve and diaphragm muscle development in the perinatal rat. J Appl Physiol 86:779–786

    Article  CAS  PubMed  Google Scholar 

  • Hallman M, Bry K, Hoppu K, Lappi M, Pohjavuori M (1992) Inositol supplementation in premature infants with respiratory distress syndrome. N Engl J Med 326(19):1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Hanley MR, Jackson TR, Vallejo M, Patterson SI, Thastrup O, Lightman S, Rogers J, Henderson G, Pini A (1988) Neural function: metabolism and actions of inositol metabolites in mammalian brain. Philos Trans R Soc Lond B Biol Sci 320(1199):381–398

    Google Scholar 

  • Harlan JE, Hajduk PJ, Yoon HS, Fesik SW (1994) Pleck-strin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371(6493):168–170

    Article  CAS  PubMed  Google Scholar 

  • He L, Chen J, Dinger B, Fidone S (1996) Endothelin modulates chemoreceptor cell function in mammalian carotid body. Adv Exp Med Biol 410:305–311

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter AO, Legnevall L, Herlenius E, Katz-Salamon M (2008) Cardiorespiratory development in extremely preterm infants: vulnerability to infection and persistence of events beyond term-equivalent age. Acta Paediatr 97:285–292

    Article  CAS  PubMed  Google Scholar 

  • Holub BJ (1986) Metabolism and function of myo-inositol and inositol phospholipids. Ann Rev Nutr 6:563–597

    Article  CAS  Google Scholar 

  • Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2(1):141–219

    PubMed  PubMed Central  Google Scholar 

  • McQueen DS, Dashwood MR, Cobb VJ, Bond SM, Marr CG, Spyer KM (1995) Endothelins and rat carotid body: autoradiographic and functional pharmacological studies. J Auton Nerv Syst 53:115–125

    Article  CAS  PubMed  Google Scholar 

  • Moratalla R, Vallejo M, Lightman SL (1988) Vasopressin stimulates inositol phospholipid metabolism in rat medulla oblongata in vivo. Brain Res 450(1–2):398–402

    Article  CAS  PubMed  Google Scholar 

  • Ogimoto G, Yudowski GA, Barker CJ, Köhler M, Katz AI, Féraille E, Pedemonte CH, Berggren PO, Bertorello AM (2000) G protein-coupled receptors regulate Na+,K+-ATPase activity and endocytosis by modulating the recruitment of adaptor protein 2 and clathrin. Proc Natl Acad Sci 7(7):3242–3247

    Article  Google Scholar 

  • Poets CF, Roberts RS, Schmidt B, Whyte RK, Asztalos EV, Bader D, Bairam A, Moddemann D, Peliowski A, Rabi Y, Solimano A, Nelson H (2015) Canadian oxygen trial investigators. Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants. JAMA 314(6):595–603

    Article  CAS  PubMed  Google Scholar 

  • Pokorsky M, Strosznajder R (1993) PO2-dependence of phospholipase C in the cat carotid body. Adv Exp Med Biol 337:191–195

    Article  Google Scholar 

  • Raman L, Tkac I, Ennis K, Georgieff MK, Gruetter R, Rao R (2005) In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus. Res Rep 156:202–209

    Article  CAS  PubMed  Google Scholar 

  • Rigual R, Cachero MT, Rocher A, González C (1999) Hypoxia inhibits the synthesis of phosphoinositides in the rabbit carotid body. Pflugers Arch 437(6):839–845

    Article  CAS  PubMed  Google Scholar 

  • Roll P, Massacrier A, Pereira S, Robaglia-Schlupp A, Cau P, Szepetowski P (2002) New human sodium/glucose cotransporter gene (KST1): identification, characterization, and mutation analysis in ICCA (infantile convulsions and choreoathetosis) and BFIC (benign familial infantile convulsions) families. Gene 285:141–148

    Article  CAS  PubMed  Google Scholar 

  • Serra A1, Brozoski D, Hedin N, Franciosi R, Forster HV (2001) Mortality after carotid body denervation in rats. J Appl Physiol (1985) 91(3):1298–1306

    Article  CAS  Google Scholar 

  • Stock C, Teyssier G, Pichot V, Goffaux P, Barthelemy JC, Patural H (2010) Autonomic dysfunction with early respiratory syncytial virus-related infection. Auton Neurosci 156:90–95

    Article  PubMed  Google Scholar 

  • Vallejo M, Jackson T, Lightman S, Hanley MR (1987) Occurrence and extracellular actions of inositol pentakis- and hexakisphosphate in mammalian brain. Nature 330(6149):656–658

    Article  CAS  PubMed  Google Scholar 

  • Wurmser AE, Gary JD, Emr SD (1999) Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J Biol Chem 274(14):9129–9132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.M.M. and J.M.D. are supported by the Gerber Foundation. Reference# 1082-4005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. MacFarlane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

MacFarlane, P.M., Di Fiore, J.M. (2018). Myo-inositol Effects on the Developing Respiratory Neural Control System. In: Gauda, E., Monteiro, M., Prabhakar, N., Wyatt, C., Schultz, H. (eds) Arterial Chemoreceptors. Advances in Experimental Medicine and Biology, vol 1071. Springer, Cham. https://doi.org/10.1007/978-3-319-91137-3_20

Download citation

Publish with us

Policies and ethics