Skip to main content

Genetic Transformation in Eucalyptus

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 2

Abstract

Eucalyptus, commonly known as eucalypts, has over 700 species and is native to Australia and the neighboring islands of Timor and Indonesia. Due to their superior growth, adaptability to specific environments, and desirable wood properties, Eucalyptus species have become the most valuable and widely planted hardwoods in the world. The main theme to attempt genetic transformation in trees is the improvement of productivity and quality. The potential of production of trees with novel traits is one of the most distinct benefits of genetic transformation. There are three prerequisites for successful genetic transformation of a cell or tissue: introduction of the DNA into the cell, its integration into the host genome, and the controlled expression of the introduced DNA. Common methods for genetic transformation are usually divided into indirect or direct transformation. Biological methods using bacteria are referred to as indirect, while direct methods are physical which are based on the penetration of the cellular wall. Indirect transformation methods introduce plasmids/independent circular molecules of DNA that are found in bacteria, separate from the bacterial chromosome into the target cell by means of bacteria capable of transferring genes to higher plant species. The most popular used microorganisms are Agrobacterium tumefaciens and Agrobacterium rhizogenes. Direct transfer includes electroporation and microprojectile/biolistics/particle bombardment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Baki AA, Saunders JA, Matthews BF, Pittarelli GW (1990) DNA uptake during electroporation of germinating pollen grains. Plant Sci 70(2):181–190

    Article  CAS  Google Scholar 

  • Aggarwal D, Kumar A, Reddy MS (2011) Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis. Acta Physiol Plant 33(5):1603–1611

    Article  CAS  Google Scholar 

  • Ahad A, Maqbool A, Malik KA (2014) Optimization of Agrobacterium tumefaciens mediated transformation in Eucalyptus camaldulensis. Pak J Bot 76(2):735–774

    Google Scholar 

  • Antanas VS, Van Beveren K, Leitch MA, Bossinger G (2005) Agrobacterium-mediated in vitro transformation of wood-producing stem segments in Eucalypts. Plant Cell Rep 23:617–624

    Article  CAS  Google Scholar 

  • Antony Ceasar S, Ignacimuthu S (2009) Genetic engineering of millets: current status and future prospects. Biotechnol Lett 31:779–788

    Article  PubMed  CAS  Google Scholar 

  • Baghdady A, Blervacq AS, Jouanin L, Grima-Pettenati J, Sivadon P, Hawkins S (2006) Eucalyptus gunnii CCR and CAD2 promoters are active in lignifying cells during primary and secondary xylem formation in Arabidopsis thaliana. Plant Physiol Biochem 44(11–12):674–683

    Article  PubMed  CAS  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, Doorsselaere JV, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inze D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • BeiLmann A, Albrecht K, Schultze S, Wanner G, Pfitzner UM (1992) Activation of a truncated PR-l promotor by endogenous enhancers in transgenic plants. Plant Mol Biol 18:65–78

    Article  PubMed  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304(5922):184–187

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8(12):576–581

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538

    Article  PubMed  CAS  Google Scholar 

  • Briggs BG, Johnson LAS (1979) Evolution in the Myrtaceae – evidence from inflorescence structure. Proc Linnean Soc NSW 102:157–256

    Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433(7026):629–633

    Article  PubMed  CAS  Google Scholar 

  • Carocha V, Soler M, Hefe C, Cassan-Wang H, Fevereiro P, Alexander A (2015) Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytol 206:1–17

    Article  PubMed  CAS  Google Scholar 

  • Castellanos-Hernández OA, Rodríguez-Sahagun A, Acevedo-Hernández GJ, Rodríguez-Garay B, Cabrera-Ponce JL, Herrera-Estrella LR (2009) Transgenic Paulownia elongata plants using biolistic-mediated transformation. Plant Cell Tiss Org Cult 9(2):175–181

    Article  CAS  Google Scholar 

  • Chaix G, Monteuuis O (2004). Biotechnology in the forestry sector. Food and Agriculture Organization. In: Preliminary review of biotechnology in forestry, including genetic modification. FAO-Division des ressources forestières. Rome: FAO, pp 19–56

    Google Scholar 

  • Chan MT, Lee TM, Chang HH (1992) Transformation of Indica Rice (Oryza saliva L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol 33:577–583

    CAS  Google Scholar 

  • Chand PK, Ochatt SJ, Rech EL, Power JB, Davey MR (1988) Electroporation stimulates plant regeneration from protoplasts of the woody medicinal species Solarium dulcamara L. J Exp Bot 39(9):1267–1274

    Article  Google Scholar 

  • Chawla HS (2000) Introduction to plant biotechnology. Enfield, NH, USA

    Google Scholar 

  • Cheah KT (2001) Methods for producing genetically modified plants, genetically modified plants, plant materials and plant products produced thereby. United States Patent No 6255559 [Issued July 2001]

    Google Scholar 

  • Chen ZZ, Chang SH, Ho CK, Chen YC, Tsai JB, Chiang VL (2001) Plant production of transgenic Eucalyptus camaldulensis carrying the Populus tremuloides cinnamate 4-hydroxylase gene. Taiwan J For Sci 16:249–258

    CAS  Google Scholar 

  • Chen ZZ, Ho CK, Ahn IS, Chiang VL (2007) Eucalyptus. In: Wang K (ed) Methods in molecular biology. Vol. 344: Agrobacterium protocols Vol. II. Humana Press, Inc., Totowa, pp 125–134

    Google Scholar 

  • Chen BW, Xiao YF, Li JJ, Liu HL, Qin ZH, Gai Y, Jiang XN (2016a) Identification of the CAD gene from Eucalyptus urophylla GLU4 and its functional analysis in transgenic tobacco. Genet Mol Res 15(4):1–21

    Google Scholar 

  • Chen W, Li S, Yu H, Liu X, Huang L, Wang Q, Liu H, Cui Y, Tang Y, Zhang P, Wang C (2016b) ER adaptor SCAP translocates and recruits IRF3 to perinuclear microsome induced by cytosolic microbial DNAs. PLoS Pathog 12(2):1–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chriqui D, Adam S, Caissard JC, Noin M, Azim A (1992) Shoot regeneration and Agrobacterium-mediated transformation of E. globulus and E. gunnii. In: Schonau APG (ed) IUFRO symposium on intensive forestry: the role of Eucalyptus. Proceedings. Pretoria, South Africa: South African Institute of Forestry, pp 70–80

    Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza Sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Nat Biotechnol 9(10):957–962

    Article  Google Scholar 

  • Creux NM, Ranik M, Berger DK, Myburg AA (2008) Comparative analysis of orthologous cellulose synthase promoters from Arabidopsis, Populus and Eucalyptus: evidence of conserved regulatory elements in angiosperms. New Phytol 179:722–737

    Article  PubMed  CAS  Google Scholar 

  • Danilova SA (2007) The technologies for genetic transformation of cereals. Russ J Plant Physiol 54:569–581

    Article  CAS  Google Scholar 

  • de la Torre F, Rodrıguez R, Jorge G, Villar B, Alvarez-Otero R, Grima- Pettenati J, Gallego PP (2014) Genetic transformation of Eucalyptus globulus using the vascular-specific EgCCR as an alternative to the constitutive CaMV35S promoter. Plant Cell Tiss Org Cult 117:77–84

    Article  CAS  Google Scholar 

  • Dekeyser RA, Claes B, De Rycke RMU, Habets ME, Van Montagu MC, Caplan AB (1990) Transient gene expression in intact and organized rice tissues. Plant Cell 2(7):591–602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delbreil B, Jullien M (1993) Agrobacterium mediated transformation of Asparagus officinalis L. Long term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep 13:372–376

    Google Scholar 

  • Dhar MK, Kaul S, Kour J (2011) Towards the development of better crops by genetic transformation using engineered plant chromosomes. Plant Cell Rep 30(5):799–806

    Article  PubMed  CAS  Google Scholar 

  • Dibax R, Quisen RC, Bona C, Quoirin M (2010) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Dehn and histological study of organogenesis in vitro. Braz Arch Biol Technol 53(2):311–331. Mar/Apro

    Article  CAS  Google Scholar 

  • Diouf D (2003) Genetic transformation of forest trees. African J Biotechnol 2:328–333

    Article  CAS  Google Scholar 

  • Djuzenova CS, Zimmermann U, Frank H, Sukhorukov VL, Richter E, Fuhr G (1996) Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochim Biophys Acta-Biomembr 1284:143–152

    Article  Google Scholar 

  • Dunsmuir P, Bond D, Lee K, Gidoni D, Townsend J (1988) Stability of introduced genes and stability in expression. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer Academic Publishers, Belgium, pp 1–7

    Google Scholar 

  • Eldridge K, Davidson J, Harwood C, Van WG (1993) Eucalypt domestication and breeding. Oxford University Press, New York electroporation in high electric fields. EMBO J 1(7):841–845

    Google Scholar 

  • Eldridge K, Davidson C, Harwood C, Van Wyk G (1994) Eucalyptus domestication and breeding. Oxford University Press, New York

    Google Scholar 

  • Escoffre JM, Portet T, Wasungu L, Teissié J, Dean D, Rols MP (2009) What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues? Mol Biotechnol 41(3):286–295

    Article  PubMed  CAS  Google Scholar 

  • Evans J (1999) Planted forests of the wet and dry tropics: their variety, nature, and significance. In: Planted forests: contributions to the quest for sustainable societies. Springer, Netherlands, pp 25–36

    Chapter  Google Scholar 

  • FAO (2004) The state of food and agriculture 2003–2004. Agricultural biotechnology: meeting the needs of the poor? FAO agriculture series, no. 35 Rome

    Google Scholar 

  • FAO (2007) The state of food and agriculture. Paying farmers for environmental services. Food and agriculture organization of the united nations, Rome

    Google Scholar 

  • Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20:291–296

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Lauvergeat V, Deswarte C, Pilate G, Boudet A, Grima-Pettenati J (1995) Tissue-specific and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants. Plant Mol Biol 27:651–667

    Article  PubMed  CAS  Google Scholar 

  • Fillatti JJ, Selmer J, McCown B, Hassig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199

    Article  CAS  Google Scholar 

  • Foucart C, Jauneau A, Gion JM, Amelot N, Martinez Y, Panegos P, Grima-Pettenati J (2009) Over expression of EgROP1, a Eucalyptus vascular-expressed Rac-like small GTPase, affects secondary xylem formation in Arabidopsis thaliana. New Phytol 183:1014–1029

    Article  PubMed  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RD, Sanders PR, Flick S (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallardo F, Fu J, Jing ZP, Kirby EG, Caovas FM (2003) Genetic modification of amino acid metabolism in woody plants. Plant Physiol Biochem 41:587–594

    Article  CAS  Google Scholar 

  • Gallie DR, Lucas WJ, Walbot V (1989) Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell 1(3):301–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao J, Lee M, An G (1991) The stability of foreign protein production in genetically modified plant cells. Plant Cell Rep 10:533–536

    Article  PubMed  CAS  Google Scholar 

  • Gartland KMA, Crow RM, Fenning TM, Gartland JS (2003) Genetically modified trees: production, properties and potential. J Arboric 29(5):259–266

    Google Scholar 

  • Gendloff EH, Bowen B, Buchholz WG (1990) Quantification of chloramphenicol acetyl transferase in transgenic tobacco plants by ELISA and correlation with gene copy number. Plant Mol Biol 14:575–583

    Article  PubMed  CAS  Google Scholar 

  • Girijashankar V (2011) Genetic transformation of Eucalyptus. Physiol Mol Biol Plants 17:9–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567

    Article  PubMed  CAS  Google Scholar 

  • Gonza’lez ER, de Andrade A, Bertolo AL, Coelho G, Tozelli R, Prado VA, Veneziano MT, Labate CA (2002) Production of transgenic Eucalyptus grandis, E. urophylla using the sonication-assisted Agrobacterium transformation (SAAT) system. Funct Plant Biol 29:97–102

    Article  Google Scholar 

  • Grattapaglia D, Bradshaw HD (1994) Nuclear-DNA content of commercially important Eucalyptus species and hybrids. Can J For Res 24(5):1074–1078

    Article  Google Scholar 

  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179(4):911–929

    Article  PubMed  CAS  Google Scholar 

  • Grierson D, Covey SN (1984) Prospects for the genetic engineering of plants. In: Plant molecular biology, 1st edn. Blackie & Son Limited, Glasgow/London, pp 147–159

    Google Scholar 

  • Griffin AR, Burgess IP, Wolf L (1988a) Patterns of natural and manipulated hybridisation in the genus Eucalyptus L’Hérit. A review. Aust J Bot 36:41–66

    Article  Google Scholar 

  • Grima-Pettenati J, Feuillet C, Goffner D, Borderies G, Boudet AM (1993) Molecular cloning and expression of a Eucalyptus gunnii cDNA clone encoding cinnamyl alcohol dehydrogenase. Plant Mol Biol 21:1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Groves RH (1994) Australian vegetation, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Han KY, Yang J (2000) Genetic transformation of orchids. United States Patent No 6020538 [Issued February 2000]

    Google Scholar 

  • Harcourt RL, Kyozuka J, Floyd RB, Bateman KS, Tanaka H, Decroocq V, Llewellyn DJ, Zhu X, Peacock WJ, Dennis ES (2000) Insect- and herbicide-resistant transgenic Eucalyptus. Mol Breed 6:307–315

    Article  CAS  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17

    Article  PubMed  CAS  Google Scholar 

  • Hartman CL, Lee L, Day PR, Tumer NE (1994) Herbicide resistant turfgrass (Agrostis palustris huds) by biolistic transformation. Bio/Technol 12(9):919–923

    CAS  Google Scholar 

  • Hawkins S, Samaj J, Lauvergeat V, Boudet A, Grima-Pettenati J (1997) Cinnamyl alcohol dehydrogenase: identification of new sites of promoter activity in transgenic poplar. Plant Physiol 113:321–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hensgens LAM, Fornerod MWJ, Rueb S, Winkler AA, van der Veen S, Schilperoort RA (1992) Translation controls the expression level of a chimaeric reporter gene. Plant Mol Biol 20:921–938

    Article  PubMed  CAS  Google Scholar 

  • Herschbach C, Kopriva S (2002) Transgenic trees as tools in tree and plant physiology. Trees 16:250–261

    Article  CAS  Google Scholar 

  • Hjouj M, Rubinsky B (2010) Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue. J Membr Biol 236(1):137–146

    Article  PubMed  CAS  Google Scholar 

  • Ho CK, Chang SH, Tsay JY, Tsai CJ, Chiang VL, Chen ZZ (1998) Agrobacterium tumefaciens mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Rep 17:675–680

    Article  CAS  PubMed  Google Scholar 

  • Hobbs SLA, Kpoda P, DeLong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SLA, Warkentin TD, DeLong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:15–38

    Article  PubMed  CAS  Google Scholar 

  • Hu CY, Wang L (1999) In-planta soybean transformation technologies developed in China: procedure, confirmation and field performance. In Vitro Cell Dev Biol Plant 35(5):417–420

    Article  Google Scholar 

  • Huang M, Zhang L (1999) Association of the movement protein of alfalfa mosaic virus with the endoplasmic reticulum and its trafficking in epidermal cells of onion bulb scales. Mol Plant Microbe Interact 12(8):680–690

    Article  CAS  Google Scholar 

  • Huang J, Wu L, Yalda D, Adkins Y, Kelleher SL, Crane M et al (2002) Expression of functional recombinant human lysozyme in transgenic rice cell culture. Transgenic Res 11(3):229–239

    Google Scholar 

  • Hui SW (1995) Effects of pulse length and strength on electroporation efficiency. In: Nickoloff JA (ed) Methods in molecular biology. Plant cell electroporation and electrofusion protocols. Humana Press Inc., Totowa, pp 29–40

    Google Scholar 

  • Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 11:173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussey SG, Saedi MN, Hefer CA, Myburg AA, Grima-Pettenati J (2015) Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus. New Phytol 206:1337–1350

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Miyazaki C, Yamamoto M, Terada R, Iida S, Shimamoto K (1991) Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.). Mol Gen Genet 227(3):391–396

    Article  PubMed  CAS  Google Scholar 

  • Jia Z, Sun Y, Yuan L, Tian Q, Luo K (2010) The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr. Biotechnol Lett 32:1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Joersbo M, Brunstedt J (1990) Direct gene transfer to plant protoplasts by electroporation by alternating, rectangular and exponentially decaying pulses. Plant Cell Rep 8(12):701–705

    Article  PubMed  CAS  Google Scholar 

  • Johnson LAS (1976) Problems of species and genera in Eucalyptus (Myrtaceae). Plant Syst Evol 125:155–167

    Article  Google Scholar 

  • Kawaoka A, Nanto K, Sugita K, Endo S, Watanabe KY, Matsunaga EH (2003) Production and analysis of lignin modified transgenic eucalyptus. Tree Biotechnology Symposium, Sweden

    Google Scholar 

  • Kawasu T, Doi K, Ohta T, Shinohara Y, Ito K, Shibata M (1990) Transformation of Eucalyptus saligna using electroporation. Abstract In: 7th international congress on plant tissue and cell culture, Amsterdam. IAPTC 24–29 June, pp 64

    Google Scholar 

  • Kawazu T, Dol K, Tatemichi y, Ito K, Shibata M (1996) Regeneration of transgenic plants by nodule culture systems in Eucalyptus camaldulensis. In: Proc IUFRO Conf-“Ttee improvement for sustainable tropical forest”, pp 492–497

    Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327(6117):70–73

    Article  CAS  Google Scholar 

  • Kooter JM, Mol JNM (1993) Trans-inactivation of gene expression in plants. Curr Sci 4:166–171

    CAS  Google Scholar 

  • Kothari SL, Kumar S, Vishnoi RK, Kothari SL, Watanabe KN (2005) Applications of biotechnology for improvement of millet crops: review of progress and future prospects. Plant Biotechnol 22:81–88

    Article  CAS  Google Scholar 

  • Krimi Z, Raio A, Petit A, Nesme X, Dessaux Y (2006) Eucalyptus occidentalis plantlets are naturally infected by pathogenic Agrobacterium tumefaciens. Eur J Plant Pathol 116:237–246

    Article  CAS  Google Scholar 

  • Kubiniec RT, Liang H, Hui SW (1990) Effects of pulse length and pulse strength on transfection by electroporation. Biotechniques 8(1):16–20

    PubMed  CAS  Google Scholar 

  • Kumar V, Rout S, Tak MK, Deepak KR (2015) Application of biotechnology in forestry: current status and future perspective. Nat Environ Pollut Technol 14(3):1–9

    CAS  Google Scholar 

  • Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudeta M (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    Article  PubMed  CAS  Google Scholar 

  • Lacombe E, Van Doorsselaere J, Boerjan W, Boudet A, Grima-Pettenati J (2000) Characterization of cis-elements required for vascular expression of the cinnamoyl CoA reductase gene and for protein-DNA complex formation. Plant J 23:663–676

    Article  PubMed  CAS  Google Scholar 

  • Ladiges PY (1997) Phylogenetic history and classification of Eucalypt. In: Willaim J, Woinarski J (eds) Eucalypt ecology: individual to ecosystems. Cambridge University Press, Cambridge, pp 16–29

    Google Scholar 

  • Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC, Boerjan W, Ferret V, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119:153–163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Lauvergeat V, Rech P, Jauneau A, Guez C, Coutos-Thevenot P, Grima-Pettenati J (2002) The vascular expression pattern directed by the Eucalyptus gunnii cinnamyl alcohol dehydrogenase EgCAD2 promoter is conserved among woody and herbaceous plant species. Plant Mol Biol 50:497–509

    Article  PubMed  CAS  Google Scholar 

  • Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C (2010) EgMYB1, an R2R3 MYB transcription factor from Eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol 188:774–786

    Article  PubMed  CAS  Google Scholar 

  • Leple JC, Grima-Pettenati J, Van Montagu M, Boerjan W (1998) A cDNA encoding cinnamoyl-CoA reductase from Populus trichocarpa (PGR98–121). Plant Physiol 117:1126–1126

    Google Scholar 

  • Li SL, You ZG, Liang DX, Li SR (1997) Extraction and separation of allelochemicals in wheat and its herbicidal efficacy on Imperata cylindrical. Acta phytophyl Sun 24:81–84

    Google Scholar 

  • Lindsey K, Jones MGK (1990) Selection of transformed cells. In: Dix PJ (ed) Plant cell line selection procedures and applications. YCH, Weinheim/New York/Basel/Cambridge, pp 317–339

    Google Scholar 

  • Llewellyn DJ (1999) Herbicide tolerant forest trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer Academic Publ. Dordrecht, The Netherlands, pp 439–466

    Google Scholar 

  • Luciano CS, Rhoads RE, Shaw JG (1987) Synthesis of potyviral RNA and proteins in tobacco mesophyll protoplasts inoculated by electroporation. Plant Sci 51(2–3):295–303

    Article  CAS  Google Scholar 

  • Machado LO, de Andrade GM, Cid LPB, Penchel RM, Brasileiro ACM (1997) Agrobacterium strain specificity and shooty tumour formation in eucalypt Eucalyptus grandis × E. urophylla. Plant Cell Rep 16:299–303

    CAS  PubMed  Google Scholar 

  • MacRae S, von Staden J (1990) In vitro culture of Eucalyptus grandis. Effect of glling agents on propagation. J Plant Physiology 137:249–251

    Article  Google Scholar 

  • Makouanzi G, Bouvet JM, Denis M, Saya A, Mankessi F, Vigneron P (2014) Assessing the additive and dominance genetic effects of vegetative propagation ability in Eucalyptus—influence of modeling on genetic gain. Tree Genet Genomes 10(5):1243–1256

    Article  Google Scholar 

  • Manders G, dos Santos AVP, d’Utra Vaz FB, Davey MR, Power JB (1992) Transient gene expression in electroporated protoplasts of Eucalyptus citriodora hook. Plant Cell Tiss Org Cult 30(1):69–75

    Article  CAS  Google Scholar 

  • Mantell SH, Matthews A, McKee RA (1985) Vectors for gene cloning in plants. In: Principles of plant biotechnology: an introduction to genetic engineering in plants. Blackwell Scientific Publications, Oxford/London/Edinburgh/Boston/Palo Alto/Melbourne, p 6288

    Google Scholar 

  • Marques S, Garcia-Gonzalo J, Borges JG, Botequim B, Oliveira MM, Tomé J, Tomé M (2011) Developing post –fire Eucalyptus globules stand damage and tree mortality models for enhanced forest planning in Portugal. Silva Fennica 45(1):69–83

    Article  Google Scholar 

  • Matsunaga E, Nanto K, Oishi M, Ebinuma H, Morishita Y, Sakurai N, Suzuki H, Shibata D, Shimada T (2012) Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Rep 31:225–235

    Article  PubMed  CAS  Google Scholar 

  • Mendonça EG, Stein VS, Balieiro FP, Lima CDF, Santos BR, Paiva LV (2013) Genetic transformation of Eucalyptus camaldulensis by agrobalistic method. Revista Árvore, Viçosa-MG 37(3):419–429

    Article  Google Scholar 

  • Merkle SA, Dean JF (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  • Moralejo M, Rochange F, Boudet AM, Teulieres C (1998) Generation of transgenic Eucalyptus globulus plantlets through Agrobacterium tumefaciens mediated transformation. Aust J Plant Physiol 25:207–212

    Article  Google Scholar 

  • Mullins KV, Llewellyn DJ, Hartney VJ, Strauss S, Dennis ES (1997) Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Rep 16(11):787–791

    Article  CAS  PubMed  Google Scholar 

  • Myburg AA, Potts BM, Marques C, Kirst M, Gion JM, Grattapaglia D, Grima-Pettenat J (2007) Eucalypts. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 115–160

    Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jl J (2014) The genome of Eucalyptus grandis. Nature 509:356–362

    Article  CAS  Google Scholar 

  • Nair SG, Vijayalakshmi C (2010) Genetic transformation of ITC-3, a superior clone of Eucalyptus tereticornis. Indian J Agric Res 44(3):229–232

    Google Scholar 

  • Navarro M, Ayax C, Martinez Y, Laue J, Koyal WEI, Marque C, Tuelieres C (2011) Two EguCBF1 genes over expressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oard JH, Paige DF, Simmonds JA, Gradziel TM (1990) Transient gene expression in maize, rice and wheat cells using an air gun apparatus. Plant Physiol 92(2):334–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ottaviani MP, Smits T, Hansisch ten Cate CH (1993) Differntial methylation and expression of the beta- glucuronidase and neomycin phosphotranferase genes in transgenic potato cv Bintje. Plant Sci 88:73–81

    Google Scholar 

  • Ouyang LJ, Li LM (2016) Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla x Eucalyptus grandis. Transgenic Res 25:441–452. https://doi.org/10.1007/s11248-016-9940-x

    Article  PubMed  CAS  Google Scholar 

  • Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34(3):231–293

    Article  Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandák V, Hohn T, Hohn B et al (1984) Direct gene transfer to plants. EMBO J 3(12):2717–2722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patnaik D, Khurana P (2001) Wheat biotechnology: a mini-review. Electron J Biotechnol 4(2):38–66

    Google Scholar 

  • Pena L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:5000–5506

    Article  Google Scholar 

  • Pichon M, Courbou I, Beckert M, Boudet AM, Grima-Pettenati J (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Mol Biol 38:671–676

    Article  PubMed  CAS  Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leple JC, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, BoerjanW SW, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    Article  PubMed  CAS  Google Scholar 

  • Plasencia A, Soler M, Dupas A, Ladouce N, Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Pettenati JG (2016) Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnol J 14:1381–1393

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199(2):183–188

    Article  CAS  Google Scholar 

  • Potts BM, Dungey HS (2004) Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists. New For 27(2):115–138

    Google Scholar 

  • Potts BM, Wiltshire RJE (1997) Eucalypt genetics and genecology. In: Williams J, Woinarski J (eds) Eucalypt ecology: individuals to ecosystems. Cambridge University Press, Cambridge, pp 56–91

    Google Scholar 

  • Prakash MG, Gurumurthi K (2009) Genetic transformation and regeneration of transgenic plants from precultured cotyledon and hypocotyl explants of Eucalyptus tereticornis Sm. Using Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 45(4):429–434

    Article  CAS  Google Scholar 

  • Pryor LD, Johnson LAS (1971) A classification of the eucalypts. Australian National University Press, Canberra

    Google Scholar 

  • Qayyum A, Bakhsh A, Kiani S, Shahzad K, Ali Shahid A, Husnain T et al (2009) The myth of plant transformation. Biotechnol Adv 27(6):753–763

    Article  Google Scholar 

  • Raj D, Veale A, Ma C, Strauss SH, Myburg AA (2011) Optimization of a plant regeneration and genetic transformation protocol for Eucalyptus clonal genotypes. BMC Proceedings 5(7):132

    Google Scholar 

  • Ritchie GA (1991) The commercial use of conifer rooted cuttings in forestry: a world overview. New Forests 5:247–275

    Article  Google Scholar 

  • Rochange F, Serrano L, Marque C, Teulieres C, Boudet AM (1995) DNA delivery into Eucalyptus globulus zygotic embryos through biolistics: optimization of the biological and physical parameters of bombardment for two different particle guns. Plant Cell Rep 14:674–678

    Article  PubMed  CAS  Google Scholar 

  • Samaj J, Hawkins S, Lauvergeat V, Grima-Pettenati J, Boudet A (1998) Immunolocalization of cinnamyl alcohol dehydrogenase 2 (CAD 2) indicates a good correlation with cell-specific activity of CAD 2 promoter in transgenic poplar shoots. Planta 204:437–443

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, U.S.A.

    Google Scholar 

  • Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79(1):206–209

    Article  CAS  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol 5:27–37

    Article  CAS  Google Scholar 

  • Sanford JC, Smith FD, Russel JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    Article  PubMed  CAS  Google Scholar 

  • Sartoretto LM, Barrueto CLP, Brasileiro ACM (2002) Biolistic transformation of Eucalyptus grandis × E. urophylla callus. Funct Plant Biol 29:917–924

    Article  CAS  PubMed  Google Scholar 

  • Saulis G, Venslauskas MS, Naktinis J (1991) Kinetics of pore resealing in cell membranes after electroporation. Bioelectrochem Bioenerg 26(1):1–13

    Article  Google Scholar 

  • Sedjo RA (2001) From foraging to cropping: the transition to plantation forestry, and implications for wood supply and demand. Unasylva 52:24–27

    Google Scholar 

  • Séguin A (1999) Transgenic trees resistant to microbial pests. For Chron 75:303–304

    Article  Google Scholar 

  • Serrano L, Rochange F, Sembalt JP, Marque C, Teulieres C, Boudet AM (1996) Genetic transformation of Eucalyptus globulus through biolistics: complementary development procedures for organogenesis from zygotic embryos and stable transformation of corresponding proliferating tissue. J Exp Bot 47:285–290

    Article  CAS  Google Scholar 

  • Shirsat AH, Wilford N, Croy RRD (1989) Gene copy number and levels of expression intransgenic plants of a seed specific gene. Plant Sci 61:75–80

    Article  CAS  Google Scholar 

  • Smith KR (2003) Gene therapy: theoretical and bioethical concepts. Arch Med Res 34:247–268

    Article  PubMed  CAS  Google Scholar 

  • Snyder GW, Ingersoll JC, Smigocki AC, Owens LD (1999) Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugar beet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Rep 18(10):829–834

    Article  CAS  Google Scholar 

  • Soler M, Camargo ELO, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer C (2015) The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. New Phytol 206:1364–1377

    Article  PubMed  CAS  Google Scholar 

  • Southerton SG (2007) Early flowering induction and Agrobacterium transformation of hardwood tree species Eucalyptus occidentalis. Funct Plant Biol 34:707–713

    Article  PubMed  Google Scholar 

  • Southgate EM, Davey MR, Power JB, Marchant R (1995) Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol Adv 13(4):631–651

    Article  PubMed  CAS  Google Scholar 

  • Spörlein B, Koop H-U (1991) Lipofectin: direct gene transfer to higher plants using cationic liposomes. Theor Appl Genet 83(1):1–5

    Article  PubMed  Google Scholar 

  • Strauss SH, Boerjan W, Cairney J, Campbell M, Dean J, Ellis D, Jouanin L, Sundberg B (1999) Forest biotechnology makes its position known. Nat Biotechnol 17:1145

    Article  PubMed  CAS  Google Scholar 

  • Strauss SH, DiFazio SP, Meilan R (2001) Genetically modified poplars in context. Forest Chron 77:271–279

    Article  Google Scholar 

  • Sukhorukov VL, Mussauer H, Zimmermann U (1998) The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media. J Membr Biol 163:235–245

    Article  PubMed  CAS  Google Scholar 

  • Sutton WRJ (1999) The need for planted forests and the example of radiate pine. New For 17:95–109

    Article  Google Scholar 

  • Tada Y, Sakamoto M, Fujiyama T (1990) Efficient gene introduction into rice by electroporation and analysis of transgenic plants: use of electroporation buffer lacking chloride ions. Theor Appl Genet 80(4):475–480

    Article  PubMed  CAS  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21(12):963–977

    Article  PubMed  CAS  Google Scholar 

  • Teulieres C, Grima Pettenati J, Curie C, Teissie J, Boudet AM (1991) Transient foreign gene expression in polyethylene/glycol treated or electropulsated Eucalyptus gunnii protoplasts. Plant Cell Tiss Org Cult 25:125–132

    Google Scholar 

  • Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Nat Biotechnol 6(9):1072–1074

    Article  CAS  Google Scholar 

  • Tournier V, Grat S, Marque C, Kayal WE, Penchel R, de Andrade G, Boudet AM, Teulières C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis x E. urophylla). Transgenic Res 12:403–411

    Article  PubMed  CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23(12):780–789

    Article  PubMed  CAS  Google Scholar 

  • Turgut-Kara N, Ari S (2010) The optimization of voltage parameter for tissue electroporation in somatic embryos of Astragalus chrysochlorus (Leguminosae). Afr J Biotechnol 9(29):4584–4588

    CAS  Google Scholar 

  • Turnbull JW (1999) Eucalypt plantations. New For 17:37–52

    Article  Google Scholar 

  • Tzfira T, Zuker A, Altman A (1998) Forest-tree biotechnology: genetic transformation and its application to future forests. Trends Biotechnol 16:439–446

    Article  CAS  Google Scholar 

  • Valério L, Carter D, Rodrigues CJ, Tournier V, Gominho J, Marque C, Boudet AM, Maunders M, Pereira H, Teulières C (2003) Down regulation of cinnamyl alcohol dehydrogenase, a lignification enzyme, in Eucalyptus camaldulensis. Mol Breeding 12(2):157–167

    Article  Google Scholar 

  • Van Frankenhuyzen K, Beardmore T (2004) Current status and environmental impact of transgenic forest trees. Can J For Res 34:1163–1180

    Article  Google Scholar 

  • Vasil IK (2005) The story of transgenic cereals: the challenge, the debate, and the solution: a historical perspective. In Vitro Cell Dev Biol Plant 41(5):577–583

    Article  Google Scholar 

  • Vikas K, Rout S, Tak MK, Deepak KR (2015) Application of biotechnology in forestry: current status and future perspective. Nat Environ Pollut Technol 14:645–653

    Google Scholar 

  • Volker PW (1995) Evaluation of E nitens x globules for commercial forestry. IUFRO:1–4

    Google Scholar 

  • Ward ER, Ryals JA, Miflin BJ (1993) Chemical regulation of transgene expression in plants. Plant Mol Biol 22:361–366

    Article  PubMed  CAS  Google Scholar 

  • Weaver JC (1995) Electroporation theory. In: Nickoloff JA (ed) Methods in molecular biology. Plant cell electroporation and electrofusion protocols. Humana Press Inc., Totowa, pp 3–28

    Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Biochem Bioenergetics 41:135–160

    Article  CAS  Google Scholar 

  • Wheeler MA, Byrne M, McComb JA (2003) Little genetic differentiation within the dominant forest tree, Eucalyptus marginata (Myrtaceae) of South- Western Australia. Silvae Genetica 52(5–6):254–259

    Google Scholar 

  • Yanchuck AD (2001) The role and implications of biotechnological tools in forestry. Unasylva 52:53–61

    Google Scholar 

  • Yu X, Kikuchi A, Matsunaga E, Morishita Y, Nanto K, Sakurai N, Suzuki H, Shibata D, Shimada T, Watanabe NK (2009) Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house. Plant Biotechnol 26:135–141

    Article  CAS  Google Scholar 

  • Yu H, Soler M, Mila I, San Clemente H, Savelli B, Dunand C, Paiva JAP (2014) Genome-wide characterization and expression profiling of the auxin response factor (ARF) gene family in Eucalyptus grandis PLoS One 9(9): e0108906. https://doi:10.1371/journal.pone.0108906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu H, Soler M, San Clemente H, Mila I, Paiva JAP, Myburg AA, Bouzayen M (2015) Comprehensive genome-wide analysis of the Aux/ IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation. Plant Cell Physiol 56:700–714

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Wu R (1988) Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor Appl Genet 76(6):835–840

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann U, Vienken J (1982) Stable transformation of maize after gene transfer by electroporation. J Membr Biol 67:165–182

    Article  PubMed  CAS  Google Scholar 

  • Zupan J, Zambryski P (1997) The Agrobacterium DNA transfer complex. Crit Rev Plant Sci 16:279–295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kendurkar, S.V., Rangaswamy, M. (2018). Genetic Transformation in Eucalyptus. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_13

Download citation

Publish with us

Policies and ethics