Skip to main content
Book cover

Chimerism pp 181–194Cite as

Cancer

  • Chapter
  • First Online:
  • 415 Accesses

Abstract

The term fetal cell microchimerism (FCM) indicates the persistence of fetal cells in the mother for decades after pregnancy. These cells engraft the maternal bone marrow and are able to migrate through the circulation and to reach tissues in case of damage. In animal models, a beneficial effect of microchimeric cells in the repair of tissues after injury is documented. In humans, the possible role of fetal microchimeric cells is still controversial, particularly in the cancer field. At the peripheral blood level, FCM is less frequently observed in parous women affected with cancer than in healthy controls, suggesting a beneficial role in cancer surveillance. At the tissue level, several studies propose a protective and repair function for FCM, whereas others hypothesize a role in the progression of the disease. Interestingly, fetal microchimeric cells are able to transdifferentiate along different lineages. In particular, fetal cells expressing epithelial markers are hypothesized to have a repair function, those positive for hematopoietic markers to have a role in the attack of tumor cells, whereas those displaying an endothelial phenotype to favor tumor progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stevens AM, Hermes HM, Lambert NC, Nelson JL, Meroni PL, Cimaz R. Maternal and sibling microchimerism in twins and triplets discordant for neonatal lupus syndrome-congenital heart block. Rheumatology (Oxford). 2005;44:187–91.

    Article  CAS  Google Scholar 

  2. Sato T, Fujimori K, Sato A, Ohto H. Microchimerism after induced or spontaneous abortion. Obstet Gynecol. 2008;112:593–7.

    Article  PubMed  Google Scholar 

  3. Khosrotehrani K, Johnson KL, Lau J, Dupuy A, Cha DH, Bianchi DW. The influence of fetal loss on the presence of fetal cell microchimerism: a systematic review. Arthritis Rheum. 2003;48:3237–41.

    Article  PubMed  Google Scholar 

  4. Peterson SE, Nelson JL, Gadi VK, Gammill HS. Fetal cellular microchimerism in miscarriage and pregnancy termination. Chimerism. 2013;4:136–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gammill HS, Stephenson MD, Aydelotte TM, Nelson JL. Microchimerism in recurrent miscarriage. Cell Mol Immunol. 2014;11:589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seppanen E, Fisk NM, Khosrotehrani K. Pregnancy-acquired fetal progenitor cells. J Reprod Immunol. 2013;97:27–35.

    Article  CAS  PubMed  Google Scholar 

  7. Gammill HS, Guthrie KA, Aydelotte TM, Adams Waldorf KM, Nelson JL. Effect of parity on fetal and maternal microchimerism: interaction of grafts within a host? Blood. 2010;116:2706–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mold JE, Michaëlsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, Lee TH, Nixon DF, McCune JM. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008;322:1562–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gammill HS, Adams Waldorf KM, Aydelotte TM, Lucas J, Leisenring WM, Lambert NC, Nelson JL. Pregnancy, microchimerism, and the maternal grandmother. PLoS One. 2011;6:e24101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cirello V, Perrino M, Colombo C, Muzza M, Filopanti M, Vicentini L, Beck-Peccoz P, Fugazzola L. Fetal cell microchimerism in papillary thyroid cancer: studies in peripheral blood and tissues. Int J Cancer. 2010;126:2874–8.

    PubMed  CAS  Google Scholar 

  11. Lambert NC, Erickson TD, Yan Z, Pang JM, Guthrie KA, Furst DE, Nelson JL. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: studies of healthy women and women with scleroderma. Arthritis Rheum. 2004;50:906–14.

    Article  CAS  PubMed  Google Scholar 

  12. Khosrotehrani K, Stroh H, Bianchi DW, Johnson KL. Combined FISH and immunolabeling on paraffin-embedded tissue sections for the study of microchimerism. Biotechniques. 2003;34(2):242–4.

    PubMed  CAS  Google Scholar 

  13. Ariga H, Ohto H, Busch MP, Imamura S, Watson R, Reed W, Lee TH. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion. 2001;41:1524–30.

    Article  CAS  PubMed  Google Scholar 

  14. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 1996;93:705–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O’Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, Roberts IA, Fisk NM. Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet. 2004;364:179–82.

    Article  PubMed  Google Scholar 

  16. Lambert NC, Lo YM, Erickson TD, Tylee TS, Guthrie KA, Furst DE, Nelson JL. Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood. 2002;100:2845–51.

    Article  CAS  PubMed  Google Scholar 

  17. Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood. 1999;93:2033–7.

    PubMed  CAS  Google Scholar 

  18. Khosrotehrani K, Bianchi DW. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci. 2005;118:1559–63.

    Article  CAS  PubMed  Google Scholar 

  19. Parant O, Dubernard G, Challier JC, Oster M, Uzan S, Aractingi S, Khosrotehrani K. CD34+ cells in maternal placental blood are mainly fetal in origin and express endothelial markers. Lab Investig. 2009;89:915–23.

    Article  CAS  PubMed  Google Scholar 

  20. Kara RJ, Bolli P, Karakikes I, Matsunaga I, Tripodi J, Tanweer O, Altman P, Shachter NS, Nakano A, Najfeld V, Chaudhry HW. Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation. Circ Res. 2012;110:82–93.

    Article  CAS  PubMed  Google Scholar 

  21. Rijnink EC, Penning ME, Wolterbeek R, Wilhelmus S, Zandbergen M, van Duinen SG, Schutte J, Bruijn JA, Bajema IM. Tissue microchimerism is increased during pregnancy: a human autopsy study. Mol Hum Reprod. 2015;21:857–64.

    Article  CAS  PubMed  Google Scholar 

  22. Fujiki Y, Johnson KL, Tighiouart H, Peter I, Bianchi DW. Fetomaternal trafficking in the mouse increases as delivery approaches and is highest in the maternal lung. Biol Reprod. 2008;79:841–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson KL, Bianchi DW. Fetal cells in maternal tissue following pregnancy: what are the consequences? Hum Reprod Update. 2004;10:497–502.

    Article  PubMed  Google Scholar 

  24. Sunami R, Komuro M, Yuminamochi T, Hoshi K, Hirata S. Fetal cell microchimerism develops through the migration of fetus-derived cells to the maternal organs early after implantation. J Reprod Immunol. 2010;84:117–23.

    Article  CAS  PubMed  Google Scholar 

  25. Khosrotehrani K, Reyes RR, Johnson KL, Freeman RB, Salomon RN, Peter I, Stroh H, Guégan S, Bianchi DW. Fetal cells participate over time in the response to specific types of murine maternal hepatic injury. Hum Reprod. 2007;22:654–61.

    Article  CAS  PubMed  Google Scholar 

  26. Khosrotehrani K, Leduc M, Bachy V, Nguyen Huu S, Oster M, Abbas A, Uzan S, Aractingi S. Pregnancy allows the transfer and differentiation of fetal lymphoid progenitors into functional T and B cells in mothers. J Immunol. 2008;180(2):889–97.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen Huu S, Oster M, Uzan S, Chareyre F, Aractingi S, Khosrotehrani K. Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells. Proc Natl Acad Sci U S A. 2007;104:1871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nguyen Huu S, Khosrotehrani K, Oster M, Moguelet P, Espié MJ, Aractingi S. Early phase of maternal skin carcinogenesis recruits long-term engrafted fetal cells. Int J Cancer. 2008;123:2512.

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen Huu S, Oster M, Avril MF, Boitier F, Mortier L, Richard MA, Kerob D, Maubec E, Souteyrand P, Moguelet P, Khosrotehrani K, Aractingi S. Fetal microchimeric cells participate in tumour angiogenesis in melanomas occurring during pregnancy. Am J Pathol. 2009;174:630–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tan XW, Liao H, Sun L, Okabe M, Xiao ZC, Dawe GS. Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier? Stem Cells. 2005;23:1443–52.

    Article  CAS  PubMed  Google Scholar 

  31. Zeng XX, Tan KH, Yeo A, Sasajala P, Tan X, Xiao ZC, Dawe G, Udolph G. Pregnancy-associated progenitor cells differentiate and mature into neurons in the maternal brain. Stem Cells Dev. 2010;19:1819–30.

    Article  PubMed  Google Scholar 

  32. Wang Y, Iwatani H, Ito T, Horimoto N, Yamato M, Matsui I, Imai E, Hori M. Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem Biophys Res Commun. 2004;325:961–7.

    Article  CAS  PubMed  Google Scholar 

  33. Dubernard G, Aractingi S, Oster M, Rouzier R, Mathieu MC, Uzan S, Khosrotehrani K. Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Res. 2008;10:R14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dubernard G, Oster M, Chareyre F, Antoine M, Rouzier R, Uzan S, Aractingi S, Khosrotehrani K. Increased fetal cell microchimerism in high grade breast carcinomas occurring during pregnancy. Int J Cancer. 2009;124:1054–9.

    Article  CAS  PubMed  Google Scholar 

  35. Castela M, Nassar D, Sbeih M, Jachiet M, Wang Z, Aractingi S. Ccl2/Ccr2 signalling recruits a distinct fetal microchimeric population that rescues delayed maternal wound healing. Nat Commun. 2017;8:15463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tokita K, Terasaki P, Maruya E, Saji H. Tumor regression following stem cell infusion from daughter to microchimeric mother. Lancet. 2001;358:2047–8.

    Article  CAS  PubMed  Google Scholar 

  37. Cha D, Khosrotehrani K, Kim Y, Stroh H, Bianchi DW, Johnson KL. Cervical cancer and microchimerism. Obstet Gynecol. 2003;102:774–81.

    PubMed  Google Scholar 

  38. Gadi VK, Nelson JL. Fetal microchimerism in women with breast cancer. Cancer Res. 2007;67:9035–8.

    Article  CAS  PubMed  Google Scholar 

  39. Gadi VK, Malone KE, Guthrie KA, Porter PL, Nelson JL. Case-control study of fetal microchimerism and breast cancer. PLoS One. 2008;3:e1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gadi VK. Fetal microchiemrism in breast from women with and without breast cancer. Breast Cancer Res Treat. 2010;121:241–4.

    Article  PubMed  Google Scholar 

  41. Cirello V, Recalcati MP, Muzza M, Rossi S, Perrino M, Vicentini L, Beck-Peccoz P, Finelli P, Fugazzola L. Fetal cell microchimerism in papillary thyroid cancer: a possible role in tumor damage and tissue repair. Cancer Res. 2008;68:8482–8.

    Article  CAS  PubMed  Google Scholar 

  42. Cirello V, Colombo C, Perrino M, De Leo S, Muzza M, Maffini MA, Fugazzola L. Fetal cell microchimerism in papillary thyroid cancer: a role in the outcome of the disease. Int J Cancer. 2015;137:2989–93.

    Article  CAS  PubMed  Google Scholar 

  43. Gilmore GL, Haq B, Shadduck RK, Jasthy SL, Lister J. Fetal-maternal microchimerism in normal parous females and parous female cancer patients. Exp Hematol. 2008;36:1073–7.

    Article  CAS  PubMed  Google Scholar 

  44. O’Donoghue K, Sultan HA, Al-Allaf FA, Anderson JR, Wyatt-Ashmead J, Fisk NM. Microchimeric fetal cells cluster at sites of tissue injury in lung decades after pregnancy. Reprod Biomed Online. 2008;16:382–90.

    Article  PubMed  Google Scholar 

  45. Khosrotehrani K, Nguyen Huu S, Prignon A, Avril MF, Boitier F, Oster M, Mortier L, Richard MA, Maubec E, Kerob D, Mansard S, Merheb C, Moguelet P, Nassar D, Guegan S, Aractingi S. Pregnancy promotes melanoma metastasis through enhanced lymphangiogenesis. Am J Pathol. 2011;178:1870–80.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kamper-Jørgensen M, Biggar RJ, Tjønneland A, Hjalgrim H, Kroman N, Rostgaard K, Stamper CL, Olsen A, Andersen AM, Gadi VK. Opposite effects of microchimerism on breast and colon cancer. Eur J Cancer. 2012;48:2227–35.

    Article  CAS  PubMed  Google Scholar 

  47. Dhimolea E, Denes V, Lakk M, Al-Bazzaz S, Aziz-Zaman S, Pilichowska M, Geck P. High male chimerism in the female breast shows quantitative links with cancer. Int J Cancer. 2013;133:835–42.

    Article  CAS  PubMed  Google Scholar 

  48. Eun JK, Guthrie KA, Zirpoli G, Gadi VK. In situ breast cancer and microchimerism. Sci Rep. 2013;3:2192.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hromadnikova I, Kotlabova K, Pirkova P, Libalova P, Vernerova Z, Svoboda B, Kucera E. The occurrence of fetal microchimeric cells in endometrial tissues is a very common phenomenon in benign uterine disorders, and the lower prevalence of fetal microchimerism is associated with better uterine cancer prognoses. DNA Cell Biol. 2014;33:40–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nemescu D, Ursu RG, Nemescu ER, Negura L. Heterogeneous distribution of fetal microchimerism in local breast cancer environment. PLoS One. 2016;11:e0147675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jolis TW, Brucker BM, Schorl C, Butera JN, Quesenberry PJ. Low microchimeric cell density in tumors suggests alternative antineoplastic mechanism. Med Oncol. 2017;34:65.

    Article  CAS  PubMed  Google Scholar 

  52. Broestl L, Rubin JB, Dahiya S. Fetal microchimerism in human brain tumors. Brain Pathol. 2017. https://doi.org/10.1111/bpa.12557. [Epub ahead of print].

  53. Thliveris AT, Schwefel B, Clipson L, Plesh L, Zahm CD, Leystra AA, Washington MK, Sullivan R, Deming DA, Newton MA, Halberg RB. Transformation of epithelial cells through recruitment leads to polyclonal intestinal tumors. Proc Natl Acad Sci U S A. 2013;110:11523–8.

    Article  Google Scholar 

  54. Kamper-Jørgensen M. Microchimerism and survival after breast and colon cancer diagnosis. Chimerism. 2012;3:72–3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Fugazzola MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cirello, V., Fugazzola, L. (2018). Cancer. In: Draper, N. (eds) Chimerism. Springer, Cham. https://doi.org/10.1007/978-3-319-89866-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89866-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89865-0

  • Online ISBN: 978-3-319-89866-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics