Skip to main content

The Effectiveness of Antitumor Vaccine Enriched with a Heat Shock Protein 70

  • Chapter
  • First Online:
HSP70 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 14))

  • 618 Accesses

Abstract

Intracellular heat shock proteins (HSP) are overexpressed in majority of malignantly transformed cells providing stress-tolerance of tumor cells and playing important role in pathophysiology of tumor growth. The discovery of this fact has led to the development of anticancer drugs targeting molecular chaperone neutralization to sensitize tumor cells to such stressors as chemo- and radiotherapy. However, the results of applying these preparations proved to be insufficiently efficient in inhibiting tumor growth and preventing tumor progression. The finding about membrane and extracellular HSP localization has initiated a new trend in the development of methods of active immunotherapy of cancer. This has become possible due to the molecular chaperone’s ability to transform even the most tolerogenic tumor-associated antigens into immunogenic in the reaction of cross-presentation, as well as the HSP ability to function as endogenous alarmins – the agonists of pattern recognition receptor structures of the immune system – which stimulate functional maturation of antigen presenting cells. Thus, this chapter summarizes the reported as well as our own data concerning the application of HSP in cancer immune therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen presenting cells

CTL:

Cytotoxic T-lymphocytes

FDA:

Food and Drug Administration, USA

HSP:

Heat shock proteins

LOX-1:

Lectin-like oxidized low-density lipoprotein receptor-1

MHC:

The major histocompatibility complex

siRNA:

Small interfering RNA

SREC-1:

Scavenger receptor expressed by endothelial cells-1

TLR:

Toll-like receptors

Treg:

Regulatory T-cells

References

  • Abbas, A. K., & Lichtmann, A. H. (2009). In S. Pillai (Ed.), Cellular and molecular immunology (6th ed.). Philadelphia: Saunreds Elsevier.

    Google Scholar 

  • Adkins, I., Fucikova, J., Garg, A. D., Agostinis, P., & Špíšek, R. (2015). Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. OncoImmunology, 3, 968434.

    Article  Google Scholar 

  • Afanasieva, K. S., Prylutska, S. V., Lozovik, A. V., Bogutska, K. I., Sivolob, A. V., Prylutskyy, Y. I., et al. (2015). С60 fullerene prevents genotoxic effect of doxorubicin on human lymphocytes in vitro. Ukrainian Biochemical Journal, 87, 91.

    Article  PubMed  CAS  Google Scholar 

  • Ampie, L., Choy, W., Lamano, J. B., Fakurnejad, S., Bloch, O., & Parsa, A. T. (2015). Heat shock protein vaccines against glioblastoma: From bench to bedside. Journal of Neuro-Oncology, 123, 441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashley, M. P., & Kotlarski, I. (1987). In vivo H-2K and H-2D antigen expression in two allogeneic mouse tumours of low immunogenicity. Immunology and Cell Biology, 65, 323.

    Article  PubMed  Google Scholar 

  • Beatty, G. L., Li, Y., & Long, K. B. (2017). Cancer immunotherapy: Activating innate and adaptive immunity through CD40 agonists. Expert Review of Anticancer Therapy, 17, 175.

    Article  PubMed  CAS  Google Scholar 

  • Bellipanni, G., Cappello, F., Scalia, F., Conway de Macario, E., Macario, A. J., & Giordano, A. (2016). Zebrafish as a model for the study of chaperonopathies. Journal of Cellular Physiology, 231, 2107.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M. J. (2006). Cross-priming. Nature Immunology, 7, 363.

    Article  PubMed  CAS  Google Scholar 

  • Binder, R. J. (2014). Functions of heat shock proteins in pathways of the innate and adaptive immune system. Journal of Immunology, 193, 5765.

    Article  CAS  Google Scholar 

  • Bloch, O., & Parsa, A. T. (2014). Heat shock protein peptide complex-96 (HSPPC-96) vaccination for recurrent glioblastoma: A phase II, single arm trial. Neuro-Oncology, 16, 758.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloch, O., Crane, C. A., Fuks, Y., Kaur, R., Aghi, M. K., Berger, M. S., et al. (2014). Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: A phase II, single-arm trial. Neuro-Oncology, 16, 274.

    Article  PubMed  CAS  Google Scholar 

  • Bolhassani, A., & Rafati, S. (2008). Heat-shock proteins as powerful weapons in vaccine development. Expert Review of Vaccines, 7, 1185.

    Article  PubMed  CAS  Google Scholar 

  • Boliukh, I. A., Didenko, G. V., Shpak, E. G., Kuzmenko, O. P., Lisovenko, G. S., & Potebnya, G. P. (2013). Experimental study of the use of heat shocks in vaccine therapy of malignant neoplasms. Clinical Oncology, 2, 143.

    Google Scholar 

  • Boliukh, I. A., Didenko, G. V., Shpak, E. G., Kuzmenko, O. P., Lisovenko, G. S., & Potebnya, G. P. (2014). The role of HSP-peptide complexes in the construction of antitumor vaccines. Reports of the National Academy of Sciences of Ukraine, 2, 146.

    Article  Google Scholar 

  • Borges, T. J., Wieten, L., van Herwijnen, M. J., Broere, F., van der Zee, R., Bonorino, C., & van Eden, W. (2012). The anti-inflammatory mechanisms of Hsp70. Frontiers in Immunology, 3, 95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray, F., Ren, J. S., Masuyer, E., & Ferlay, J. (2013). Global estimates of cancer prevalence for 27 sites in the adult population in 2008. International Journal of Cancer, 132, 1133.

    Article  PubMed  CAS  Google Scholar 

  • Bulavin, L., Adamenko, I., Prylutskyy, Y., Durov, S., Graja, A., Bogucki, A., & Scharff, P. (2000). Structure of fullerene C60 in aqueous solution. Physical Chemistry Chemical Physics, 2, 1627.

    Article  CAS  Google Scholar 

  • Burlaka, A., Lukin, S., Prylutska, S., Remeniak, O., Prylutskyy, Y., Shuba, M., et al. (2010). Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: In vitro studies. Experimental Oncology, 32, 48.

    PubMed  CAS  Google Scholar 

  • Calderwood, S. K., & Gong, J. (2016). Heat shock proteins promote cancer: It’s a protection racket. Trends in Biochemical Sciences, 41, 311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavallo, F., Aurisicchio, L., Mancini, R., & Ciliberto, G. (2014). Xenogene vaccination in the therapy of cancer. Expert Opinion on Biological Therapy, 14, 1427.

    Article  PubMed  CAS  Google Scholar 

  • Chajon, E., Castelli, J., Marsiglia, H., & De Crevoisier, R. (2017). The synergistic effect of radiotherapy and immunotherapy: A promising but not simple partnership. Critical Reviews in Oncology/Hematology, 111, 124.

    Article  PubMed  Google Scholar 

  • Chalmin, F., Ladoire, S., Mignot, G., Vincent, J., Bruchard, M., Remy-Martin, J. P., et al. (2010). Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. The Journal of Clinical Investigation, 120, 457.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chamoto, K., Takeshima, T., Wakita, D., Ohkuri, T., Ashino, S., Omatsu, T., et al. (2009). Combination immunotherapy with radiation and CpG-based tumor vaccination for the eradication of radio- and immuno-resistant lung carcinoma cells. Cancer Science, 100, 934.

    Article  PubMed  CAS  Google Scholar 

  • Chen, P., & Bonaldo, P. (2013). Role of macrophage polarization in tumor angiogenesis and vessel normalization: Implications for new anticancer therapies. International Review of Cell and Molecular Biology, 301, 1.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca, D. R., Cayado-Gutierrez, N., Maccioni, M., & Cuello-Carrion, F. D. (2012). Heat shock proteins (HSPs) based anti-cancer vaccines. Current Molecular Medicine, 12, 1183.

    Article  PubMed  CAS  Google Scholar 

  • De Gruijl, T. D., van den Eertwegh, A. J., Pinedo, H. M., & Scheper, R. J. (2008). Whole-cell cancer vaccination: From autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunology, Immunotherapy, 57, 1569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Maio, A. (2014). Extracellular Hsp70: Export and function. Current Protein & Peptide Science, 15, 225.

    Article  CAS  Google Scholar 

  • De Maio, A., & Vazquez, D. (2013). Extracellular heat shock proteins: A new location, a new function. Shock, 40, 239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Errico, G., Machado, H. L., & Sainz, B., Jr. (2017). A current perspective on cancer immune therapy: Step-by-step approach to constructing the magic bullet. Clinical and Translational Medicine, 6, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Didenko, G. V., Dvorshchenko, O. S., Lisovenko, G. S., Kovalenko, N. G., Potebnya, G. P., Kikot, V. V., et al. (2003). The modifiсation of cancer vaccine prepared on the base of metabolic products of B. subtilis 7025 with the use of sorbents and automacrophages. Experimental Oncology, 25, 116.

    CAS  Google Scholar 

  • Didenko, G. V., Yevtushenko, O. I., Kuzmenko, A. P., Lisovenko, G. S., & Potebnia, G. P. (2010). Patent for utility model No. 52252 (Ukraine). Substance with cytotoxic action. Publ. 25.08.2010, Bull. N16.

    Google Scholar 

  • Didenko, G., Prylutska, S., Kichmarenko, Y., Potebnya, G., Prylutskyy, Y., Slobodyanik, N., et al. (2013). Evaluation of the antitumor immune response to C60 fullerene. Materialwissenschaft und Werkstofftechnik, 44, 124.

    Article  CAS  Google Scholar 

  • Dong, B., Sun, L., Wu, X., Zhang, P., Wang, L., Wei, H., et al. (2010). Vaccination with TCL plus MHSP65 induces anti-lung cancer immunity in mice. Cancer Immunology, Immunotherapy, 59, 899.

    Article  PubMed  CAS  Google Scholar 

  • Dong, L., Zhang, X., Ren, J., Wu, S., Yu, T., Hou, L., et al. (2013). Human prostate stem cell antigen and HSP70 fusion protein vaccine inhibits prostate stem cell antigen-expressing tumor growth in mice. Cancer Biotherapy & Radiopharmaceuticals, 28, 391.

    Article  CAS  Google Scholar 

  • Dowling, J. K., & Mansell, A. (2016). Toll-like receptors: The Swiss army knife of immunity and vaccine development. Clinical & Translational Immunology, 5, 85.

    Article  CAS  Google Scholar 

  • Dvorshchenko, O., Didenko, G., Pavluchenko, N., Kuzmenko, O., Golub, O., Radchenko, E., & Potebnya, G. (2008). Modulation of antitumor activity of autovaccine prepared on the basis of exogenous glycoproteids of B. subtilis by nanocomposites of aerosol. Annales UMCS. Pharmacia, 21, 321.

    Google Scholar 

  • Einstein, M. H., Kadish, A. S., Burk, R. D., Kim, M. Y., Wadler, S., Streicher, H., et al. (2007). Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecologic Oncology, 106, 453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evstigneev, M. P., Buchelnikov, A. S., Voronin, D. P., Rubin, Y. V., Belous, L. F., Prylutskyy, Y. I., & Ritter, U. (2013). Complexation of C60 fullerene with aromatic drugs. Current Medicinal Chemistry, 14, 568.

    CAS  Google Scholar 

  • Fedosova, N. I., Voeykova, I. M., Karaman, О. М., Symchych, T. V., Didenko, G. V., Lisovenko, G. S., et al. (2015). Cytotoxic activity of immune cells following administration of xenogeneic cancer vaccine in mice with melanoma B-16. Experimental Oncology, 37, 130.

    PubMed  CAS  Google Scholar 

  • Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., et al. (2013). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base (Vol. 11). Lyon: International Agency for Research on Cancer.

    Google Scholar 

  • Finn, O. J., & Beatty, P. L. (2016). Cancer immunoprevention. Current Opinion in Immunology, 39, 52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L., & Kroemer, G. (2017). Immunogenic cell death in cancer and infectious disease. Nature Reviews. Immunology, 17, 97.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, J. L., & Sondel, P. M. (2015). Enhancing cancer immunotherapy via activation of innate immunity. Seminars in Oncology, 42, 562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo, C., Manjili, M. H., Subjeck, J. R., Sarkar, D., Fisher, P. B., & Wang, X. Y. (2013). Therapeutic cancer vaccines: Past, present, and future. Advances in Cancer Research, 119, 421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hellmann, M. D., Friedman, C. F., & Wolchok, J. D. (2016). Combinatorial cancer immunotherapies. Advances in Immunology, 130, 251.

    Article  PubMed  Google Scholar 

  • Hendriks, L. E. L., & Dingemans, A. C. (2017). Heat shock protein antagonists in early stage clinical trials for NSCLC. Expert Opinion on Investigational Drugs, 26, 541.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., et al. (2002). The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology, 43, 33.

    Article  PubMed  Google Scholar 

  • Hirayama, M., & Nishimura, Y. (2016). The present status and future prospects of peptide-based cancer vaccines. International Immunology, 28, 319.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Y., Li, Z., Mi, D. H., Cao, N., Zu, S. W., Wen, Z. Z., et al. (2017). Chemoradiation combined with regional hyperthermia for advanced oesophageal cancer: A systematic review and meta-analysis. Journal of Clinical Pharmacy and Therapeutics, 42, 155.

    Article  PubMed  CAS  Google Scholar 

  • Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. (2002). Immunology: The immune system in health and disease (5th ed.). New York: Garlandpress.

    Google Scholar 

  • Kamta, J., Chaar, M., Ande, A., Altomare, D. A., & Ait-Oudhia, S. (2017). Advancing cancer therapy with present and emerging immuno-oncology approaches. Frontiers in Oncology, 7, 64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanegasaki, S., & Tsuchiya, T. (2014). Alarmins released during local antitumor treatments play an essential role in enhancing tumor growth inhibition at treated and non-treated sites via a derivative of CCL3. OncoImmunology, 3, 958956.

    Article  Google Scholar 

  • Khong, H., & Overwijk, W. W. (2016). Adjuvants for peptide-based cancer vaccines. Journal for ImmunoTherapy of Cancer, 4, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koliński, T., Marek-Trzonkowska, N., Trzonkowski, P., & Siebert, J. (2016). Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Central European Journal of Immunology, 41, 317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kraśko, J. A., Žilionytė, K., Darinskas, A., Strioga, M., Rjabceva, S., Zalutsky, I., et al. (2017). Bacterial ghosts as adjuvants in syngeneic tumour cell lysate-based anticancer vaccination in a murine lung carcinoma model. Oncology Reports, 37, 171.

    Article  PubMed  Google Scholar 

  • Kumar, C., Kohli, S., Bapsy, P. P., Vaid, A. K., Jain, M., Attili, V. S., & Sharan, B. (2017). Immune modulation by dendritic-cell-based cancer vaccines. Journal of Biosciences, 42, 161.

    Article  PubMed  CAS  Google Scholar 

  • Ladoire, S., Hannani, D., Vetizou, M., Locher, C., Aymeric, L., Apetoh, L., et al. (2014). Cell-death-associated molecular patterns as determinants of cancer immunogenicity. Antioxidants & Redox Signaling, 20, 1098.

    Article  CAS  Google Scholar 

  • Larocca, C., & Schlom, J. (2017). Viral vector-based therapeutic cancer vaccines. Cancer Journal, 17, 359.

    Article  Google Scholar 

  • Li, J., Xing, Y., Zhou, Z., Yao, W., Cao, R., Li, T., Xu, M., & Wu, J. (2016a). Microbial HSP70 peptide epitope 407-426 as adjuvant in tumor-derived autophagosome vaccine therapy of mouse lung cancer. Tumour Biology, 37, 15097.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Lin, Z., Zhao, M., Xu, T., Wang, C., Xia, H., Wang, H., & Zhu, B. (2016b). Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells. International Journal of Nanomedicine, 11, 3065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, K., Qu, S., Chen, X., Wu, Q., & Shi, M. (2017). Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. International Journal of Molecular Sciences, 18, 404.

    Article  PubMed Central  CAS  Google Scholar 

  • Lindquist, S., & Craig, E. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631.

    Article  PubMed  CAS  Google Scholar 

  • Lohmueller, J., & Finn, O. J. (2017). Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Pharmacology & Therapeutics. https://doi.org/10.1016/j.pharmthera.2017.03.008.

    Article  CAS  Google Scholar 

  • Ludgate, C. M. (2012). Optimizing cancer treatments to induce an acute immune response: Radiation abscopal effects, PAMPs, and DAMPs. Clinical Cancer Research, 18, 4522.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Y., Wen, Y. J., Ding, Z. Y., Fu, C. H., Wu, Y., Liu, J. Y., et al. (2006). Immunotherapy of tumors with protein vaccine based on chicken homologous Tie-2. Clinical Cancer Research, 12, 1813.

    Article  PubMed  CAS  Google Scholar 

  • Luo, M., Wang, H., Wang, Z., Cai, H., Lu, Z., Li, Y., et al. (2017). A STING-activating nanovaccine for cancer immunotherapy. Nature Nanotechnology. https://doi.org/10.1038/nnano.2017.52.

  • Lynch, D., & Murphy, A. (2016). The emerging role of immunotherapy in colorectal cancer. Annals of Translational Medicine, 4, 305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynchak, O. V., Prylutskyy, Y. I., Rybalchenko, V. K., Kyzyma, O. A., Soloviov, D., Kostjukov, V. V., et al. (2017). Comparative analysis of the antineoplastic activity of C60 fullerene with 5-fluorouracil and pyrrole derivative in vivo. Nanoscale Research Letters, 12, 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McConnell, J. R., & McAlpine, S. R. (2013). Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorganic & Medicinal Chemistry Letters, 23, 1923.

    Article  CAS  Google Scholar 

  • McNulty, S., Colaco, C. A., Blandford, L. E., Bailey, C. R., Baschieri, S., & Todryk, S. (2013). Heat-shock proteins as dendritic cell-targeting vaccines-getting warmer. Immunology, 139, 407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendonça, R., Silveira, A. A., & Conran, N. (2016). Red cell DAMPs and inflammation. Inflammation Research, 65, 665.

    Article  PubMed  CAS  Google Scholar 

  • Mikulandra, M., Pavelic, J., & Glavan, T. M. (2017). Recent findings on the application of toll-like receptors agonists in cancer therapy. Current Medicinal Chemistry. https://doi.org/10.2174/0929867324666170320114359.

  • Mizrahy, S., Hazan-Halevy, I., Landesman-Milo, D., Ng, B. D., & Peer, D. (2017). Advanced strategies in immune modulation of cancer using lipid-based nanoparticles. Frontiers in Immunology, 8, 69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohammed, S., Bakshi, N., Chaudri, N., Akhter, J., & Akhtar, M. (2016). Cancer vaccines: Past, resent, and future. Advances in Anatomic Pathology, 23, 180.

    Article  PubMed  CAS  Google Scholar 

  • Murshid, A., Gong, J., Stevenson, M. A., & Calderwood, S. K. (2011). Heat shock proteins and cancer vaccines: Developments in the past decade and chaperoning in the decade to come. Expert Review of Vaccines, 10, 1553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen, C. T., Hong, S. H., Sin, J. I., Vu, H. V., Jeong, K., Cho, K. O., et al. (2013). Flagellin enhances tumor-specific CD8+T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine model. Vaccine, 31, 3879.

    Article  PubMed  CAS  Google Scholar 

  • Ni, L., & Dong, C. (2017). New checkpoints in cancer immunotherapy. Immunological Reviews, 276, 52.

    Article  PubMed  CAS  Google Scholar 

  • Overwijk, W. W., & Restifo, N. P. (2001). B16 as a mouse model for human melanoma. Current Protocols in Immunology. https://doi.org/10.1002/0471142735.im2001s39.

  • Panchuk, R. R., Prylutska, S. V., Chumak, V. V., Skorokhyd, N. R., Lehka, L. V., Evstigneev, M. P., et al. (2015). Application of С60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. Journal of Biomedical Nanotechnology, 11, 1139.

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou, T. G., Karamanou, M., Protogerou, A. D., & Tousoulis, D. (2016). Heat therapy: An ancient concept re-examined in the era of advanced biomedical technologies. The Journal of Physiology, 594, 7141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul, W. E. (2013). Fundamental immunology. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Potebnya, G. P., Bolykh, I. A., Didenko, G. V., Kuzmenko, O. P., Shpak, E. G., Lisovenko, G. S., & Chekhun, V. F. (2013). Patent for utility model no. 83120 (Ukraine). Method of constructing an antitumor vaccine. Publ. 27.08.2013, Bull. N16.

    Google Scholar 

  • Prilutski, Y., Durov, S., Bulavin, L., Pogorelov, V., Astashkin, Y., Yashchuk, V., et al. (1998). Study of structure of colloidal particles of fullerenes in water solution. Molecular Crystals and Liquid Crystals, 324, 65.

    Article  CAS  Google Scholar 

  • Prilutski, Y. I., Durov, S. S., Yashchuk, V. N., Ogul’chansky, T. Y., Pogorelov, V. E., Astashkin, Y. A., et al. (1999). Theoretical predictions and experimental studies of self-organization C60 nanoparticles in water solution and on the support. The European Physical Journal D, 9, 341.

    Article  CAS  Google Scholar 

  • Prylutska, S. V., Burlaka, A. P., Klymenko, P. P., Grynyuk, I. I., Prylutskyy, Y. I., Schuetze, C., & Ritter, U. (2011a). Using water-soluble C60 fullerenes in anticancer therapy. Cancer Nanotechnology, 2, 105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prylutska, S. V., Burlaka, A. P., Prylutskyy, Y. I., Ritter, U., & Scharff, P. (2011b). Pristine C60 fullerenes inhibit the rate of tumor growth and metastasis. Experimental Oncology, 33, 162.

    PubMed  CAS  Google Scholar 

  • Prylutska, S. V., Burlaka, A. P., Prylutskyy, Y. I., Ritter, U., & Scharff, P. (2011c). Comparative study of antitumor effect of pristine C60 fullerenes and doxorubicin. Biotechnologia Acta, 4, 82.

    Google Scholar 

  • Prylutska, S. V., Didenko, G. V., Potebnya, G. P., Bogutska, K. I., Prylutskyy, Y. I., Ritter, U., & Scharff, P. (2014a). Toxic effect of С60 fullerene-doxorubicin complex towards normal and tumor cells in vitro. Biopolymers and Cell, 30, 372.

    Article  Google Scholar 

  • Prylutska, S., Grynyuk, I., Matyshevska, O., Prylutskyy, Y., Evstigneev, M., Scharff, P., & Ritter, U. (2014b). C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs in R&D, 14, 333.

    Article  CAS  Google Scholar 

  • Prylutska, S. V., Korolovych, V. F., Prylutskyy, Y. I., Evstigneev, M. P., Ritter, U., & Scharff, P. (2015a). Tumor-inhibitory effect of C60 fullerene complex with doxorubicin. Nanomedicine and Nanobiology, 2, 49.

    Article  Google Scholar 

  • Prylutska, S., Skivka, L., Didenko, G., Prylutskyy, Y., Evstigneev, M., Potebnya, G., et al. (2015b). Complex of C60 fullerene with doxorubicin as a promising agent in antitumor therapy. Nanoscale Research Letters, 10, 499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prylutska, S. V., Politenkova, S. V., Afanasieva, K. S., Korolovych, V. F., Bogutska, K. I., Sivolob, A. V., et al. (2017a). Nanocomplex of С60 fullerene with cisplatin: Design, characterization and toxicity. Beilstein Journal of Nanotechnology, 8, 1494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prylutska, S., Panchuk, R., Gołuński, G., Skivka, L., Prylutskyy, Y., Hurmach, V., et al. (2017b). С60 fullerene enhances cisplatin anticancer activity and overcomes tumor cells drug resistance. Nano Research, 10, 652.

    Article  CAS  Google Scholar 

  • Prylutskyy, Y. I., Durov, S. S., Bulavin, L. A., Adamenko, I. I., Moroz, K. O., Geru, I. I., et al. (2001). Structure and thermophysical properties of fullerene C60 aqueous solutions. International Journal of Thermophysics, 22, 943.

    Article  CAS  Google Scholar 

  • Prylutskyy, Y. I., Yashchuk, V. M., Kushnir, K. M., Golub, A. A., Kudrenko, V. A., Prylutska, S. V., et al. (2003). Biophysical studies of fullerene-based composite for bio-nanotechnology. Materials Science and Engineering: C, 23, 109.

    Article  Google Scholar 

  • Prylutskyy, Y. I., Buchelnikov, A. S., Voronin, D. P., Kostjukov, V. V., Ritter, U., Parkinson, J. A., & Evstigneev, M. P. (2013). C60 fullerene aggregation in aqueous solution. Physical Chemistry Chemical Physics, 15, 9351.

    Article  PubMed  CAS  Google Scholar 

  • Prylutskyy, Y. I., Evstigneev, M. P., Pashkova, I. S., Wyrzykowski, D., Woziwodzka, A., Gołuński, G., et al. (2014a). Characterization of C60 fullerene complexation with antibiotic doxorubicin. Physical Chemistry Chemical Physics, 16, 23164.

    Article  PubMed  CAS  Google Scholar 

  • Prylutskyy, Y. I., Petrenko, V. I., Ivankov, O. I., Kyzyma, O. A., Bulavin, L. A., Litsis, O. O., et al. (2014b). On the origin of C60 fullerene solubility in aqueous solution. Langmuir, 30, 3967.

    Article  PubMed  CAS  Google Scholar 

  • Prylutskyy, Y. I., Cherepanov, V. V., Evstigneev, M. P., Kyzyma, O. A., Petrenko, V. I., Styopkin, V. I., et al. (2015a). Structural self-organization of C60 and cisplatin in physiological solution. Physical Chemistry Chemical Physics, 17, 26084.

    Article  PubMed  CAS  Google Scholar 

  • Prylutskyy, Y. I., Evstigneev, M. P., Cherepanov, V. V., Kyzyma, O. A., Bulavin, L. A., Davidenko, N. A., & Scharff, P. (2015b). Structural organization of С60 fullerene, doxorubicin and their complex in physiological solution as promising antitumor agents. Journal of Nanoparticle Research, 17, 45.

    Article  CAS  Google Scholar 

  • Prylutskyy, Y. I., Cherepanov, V. V., Kostjukov, V. V., Evstigneev, M. P., Kyzyma, O. A., Bulavin, L. A., et al. (2016). Study of the complexation between Landomycin a and C60 fullerene in aqueous solution. RSC Advances, 6, 81231.

    Article  CAS  Google Scholar 

  • Qiu, H., Min, Y., Rodgers, Z., Zhang, L., & Wang, A. Z. (2017). Nanomedicine approaches to improve cancer immunotherapy. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. https://doi.org/10.1002/wnan.1456.

    Google Scholar 

  • Randazzo, M., Terness, P., Opelz, G., & Kleist, C. (2012). Active-specific immunotherapy of human cancers with the heat shock protein Gp96-revisited. International Journal of Cancer, 130, 2219.

    Article  PubMed  CAS  Google Scholar 

  • Rao, W., Deng, Z. S., & Liu, J. (2010). A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Critical Reviews in Biomedical Engineering, 38, 101.

    Article  PubMed  Google Scholar 

  • Rappa, F., Farina, F., Zummo, G., David, S., Campanella, C., Carini, F., et al. (2012). HSP-molecular chaperones in cancer biogenesis and tumor therapy: An overview. Anticancer Research, 32, 5139.

    PubMed  CAS  Google Scholar 

  • Ritter, U., Prylutskyy, Y. I., Evstigneev, M. P., Davidenko, N. A., Cherepanov, V. V., Senenko, A. I., et al. (2015). Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fullerenes, Nanotubes, and Carbon Nanostructures, 23, 530.

    Article  CAS  Google Scholar 

  • Rivera, V. T., Benoit-Lizon, I., & Apetoh, L. (2017). Rationale for stimulator of interferon genes-targeted cancer immunotherapy. European Journal of Cancer, 75, 86.

    Article  CAS  Google Scholar 

  • Rocque, G. B., & Cleary, J. F. (2013). Palliative care reduces morbidity and mortality in cancer. Nature Reviews. Clinical Oncology, 10, 80.

    Article  PubMed  Google Scholar 

  • Saleh, T., & Shojaosadati, S. A. (2016). Multifunctional nanoparticles for cancer immunotherapy. Human Vaccines & Immunotherapeutics, 12, 1863.

    Article  Google Scholar 

  • Santos, T. G., Martins, V. R., & Hajj, G. N. M. (2017). Unconventional secretion of heat shock proteins in cancer. International Journal of Molecular Sciences, 18, 946.

    Article  PubMed Central  Google Scholar 

  • Sayour, E. J., & Mitchell, D. A. (2017). Manipulation of innate and adaptive immunity through cancer vaccines. Journal of Immunology Research. https://doi.org/10.1155/2017/3145742.

  • Scharff, P., Carta-Abelmann, L., Siegmund, C., Matyshevska, O. P., Prylutska, S. V., Koval, T. V., et al. (2004a). Effect of X-ray and UV irradiation of the C60 fullerene aqueous solution on biological samples. Carbon, 42, 1199.

    Article  CAS  Google Scholar 

  • Scharff, P., Risch, K., Carta-Abelmann, L., Dmytruk, I. M., Bilyi, M. M., Golub, O. A., et al. (2004b). Structure of C60 fullerene in water: Spectroscopic data. Carbon, 42, 1203.

    Article  CAS  Google Scholar 

  • Shevtsov, M., & Multhoff, G. (2017). Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Frontiers in Immunology, 7, 171.

    Google Scholar 

  • Shevtsov, M. A., Yakovleva, L. Y., Nikolaev, B. P., Marchenko, Y. Y., Dobrodumov, A. V., Onokhin, K. V., et al. (2014). Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma. Neuro-Oncology, 16, 38.

    Article  PubMed  CAS  Google Scholar 

  • Shevtsov, M. A., Nikolaev, B. P., Yakovleva, L. Y., Parr, M. A., Marchenko, Y. Y., Eliseev, I., et al. (2015). 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. Journal of Controlled Release, 220, 329.

    Article  PubMed  CAS  Google Scholar 

  • Skamrova, G. B., Laponogov, I. V., Buchelnikov, A. S., Shckorbatov, Y. G., Prylutska, S. V., Ritter, U., et al. (2014). Interceptor effect of C60 fullerene on the in vitro action of aromatic drug molecules. European Biophysics Journal, 43, 265.

    Article  PubMed  CAS  Google Scholar 

  • Skivka, L. M. (2013). Immunogenic cancer cell death: How it can be exploited. Experimental Oncology, 35, 131.

    Google Scholar 

  • Skivka, L. M., Horbyk, H. V., Fedorchuk, O. H., & Pozur, V. V. (2009). Tumor-associated macrophages in the prospect of development of targeted cancer therapy. Tsitologiia i Genetika, 43, 71.

    PubMed  CAS  Google Scholar 

  • Sohail, A., Ahmad, Z., Bég, O. A., Arshad, S., & Sherin, L. (2017). A review on hyperthermia via nanoparticle-mediated therapy. Bulletin du Cancer, 104, 452.

    Article  PubMed  Google Scholar 

  • Sottile, M. L., Losinno, A. D., Fanelli, M. A., Cuello-Carrión, F. D., Montt-Guevara, M. M., Vargas-Roig, L. M., & Nadin, S. B. (2015). Hyperthermia effects on Hsp27 and Hsp72 associations with mismatch repair (MMR) proteins and cisplatin toxicity in MMR-deficient/proficient colon cancer cell lines. International Journal of Hyperthermia, 31, 464.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, P. K., & Das, M. R. (1984). The serologically unique cell-surface antigen of zajdela ascitic hepatoma is also its tumor-associated transplantation antigen. International Journal of Cancer, 33, 417.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, P. K., Deleo, A. B., & Old, L. J. (1986). Tumor rejection antigens of chemically-induced sarcomas of inbred mice. Proceedings of the National Academy of Sciences of the United States of America, 83, 3407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stope, M. B., Koensgen, D., Burchardt, M., Concin, N., Zygmunt, M., & Mustea, A. (2016). Jump in the fire-heat shock proteins and their impact on ovarian cancer therapy. Critical Reviews in Oncology/Hematology, 97, 152.

    Article  PubMed  CAS  Google Scholar 

  • Strioga, M. M., Darinskas, A., Pasukoniene, V., Mlynska, A., Ostapenko, V., & Schijns, V. (2014). Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: To use or not to use? Vaccine, 32, 4015.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, Y., Yoneda, A., Takei, N., & Sawada, K. (2016). Spatiotemporal regulation of Hsp90-ligand complex leads to immune activation. Frontiers in Immunology, 24, 201.

    Google Scholar 

  • Thomas, S., & Prendergast, G. C. (2016). Cancer vaccines: A brief overview. Methods in Molecular Biology, 1403, 755.

    Article  PubMed  Google Scholar 

  • Tosti, G., Cocorocchio, E., Pennacchioli, E., Ferrucci, P. F., Testori, A., & Martinoli, C. (2014). Heat-shock proteins-based immunotherapy for advanced melanoma in the era of target therapies and immunomodulating agents. Expert Opinion on Biological Therapy, 14, 955.

    Article  PubMed  CAS  Google Scholar 

  • Tsiatas, M., Mountzios, G., & Curigliano, G. (2016). Future perspectives in cancer immunotherapy. Annals of Translational Medicine, 4, 273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vahid, S., Thaper, D., & Zoubeidi, A. (2017). Chaperoning the cancer: The proteostatic functions of the heat shock proteins in cancer. Recent Patents on Anti-Cancer Drug Discovery, 12, 35.

    Article  PubMed  CAS  Google Scholar 

  • Voeykova, I. M., Fedosova, N. I., Karaman, O. M., Yudina, O. Y., Didenko, G. V., Lisovenko, G. S., et al. (2014). Use of xenogeneic vaccine modified with embryonal nervous tissue antigens in the treatment of B16-melanoma-bearing mice. Experimental Oncology, 36, 24.

    PubMed  CAS  Google Scholar 

  • Wang, X., Chen, M., Zhou, J., & Zhang, X. (2014). HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy. International Journal of Oncology, 45, 18.

    Article  CAS  PubMed  Google Scholar 

  • Weller, M., Roth, P., Preusser, M., Wick, W., Reardon, D. A., Platten, M., & Sampson, J. H. (2017). Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nature Reviews. Neurology, 13, 363.

    Article  PubMed  CAS  Google Scholar 

  • Werthmöller, N., Frey, B., Rückert, M., Lotter, M., Fietkau, R., & Gaipl, U. S. (2016). Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells in vitro and in vivo. International Journal of Hyperthermia, 32, 23.

    Article  PubMed  CAS  Google Scholar 

  • Wojtowicz, M. E., Dunn, B. K., & Umar, A. (2016). Immunologic approaches to cancer prevention-current status, challenges, and future perspectives. Seminars in Oncology, 43, 161.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., & Cao, S. (2017). Heat shock proteins and cancer. Trends in Pharmacological Sciences, 38, 226.

    Article  CAS  PubMed  Google Scholar 

  • Xu, M., Zhou, L., Zhang, Y., Xie, Z., Zhang, J., Guo, L., et al. (2015). A fixed human umbilical vein endothelial cell vaccine with 2 tandem repeats of microbial HSP70 peptide epitope 407-426 as adjuvant for therapy of hepatoma in mice. Journal of Immunotherapy, 38, 276.

    Article  PubMed  CAS  Google Scholar 

  • Yang, M., Yan, Y., Fang, M., Wan, M., Wu, X., Zhang, X., et al. (2012). MF59 formulated with CpG ODN as a potent adjuvant of recombinant HSP65-MUC1 for inducing anti-MUC1+tumor immunity in mice. International Immunopharmacology, 13, 408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yedjou, C. G., Tchounwou, P. B., Payton, M., Miele, L., Fonseca, D. D., Lowe, L., & Alo, R. A. (2017). Assessing the racial and ethnic disparities in breast cancer mortality in the United States. International Journal of Environmental Research and Public Health, 14, 486.

    Article  PubMed Central  CAS  Google Scholar 

  • Yi, T., Wei, Y. Q., Tian, L., Zhao, X., Li, J., Deng, H. X., et al. (2007). Humoral and cellular immunity induced by tumor cell vaccine based on the chicken xenogeneic homologous matrix metalloproteinase-2. Cancer Gene Therapy, 14, 158.

    Article  PubMed  CAS  Google Scholar 

  • Zachova, K., Krupka, M., & Raska, M. (2016). Antigen cross-presentation and heat shock protein-based vaccines. Archivum Immunologiae et Therapiae Experimentalis, 64, 1.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Luo, W., Wang, Y., Chen, J., Liu, Y., & Zhang, Y. (2015). Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells. Oncology Reports, 33, 2695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, G., Liu, Y., Yang, X., Kim, Y. H., Zhang, H., Jia, R., et al. (2016). DNA-inorganic hybrid nanovaccine for cancer immunotherapy. Nanoscale, 8, 6684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo, D., Subjeck, J., & Wang, X. Y. (2016). Unfolding the role of large heat shock proteins: New insights and therapeutic implications. Frontiers in Immunology, 7, 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine and Taras Shevchenko National University of Kyiv.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Didenko, G., Kruts, O., Skivka, L., Prylutskyy, Y. (2018). The Effectiveness of Antitumor Vaccine Enriched with a Heat Shock Protein 70. In: Asea, A., Kaur, P. (eds) HSP70 in Human Diseases and Disorders. Heat Shock Proteins, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-89551-2_17

Download citation

Publish with us

Policies and ethics