Skip to main content

Endocytic Trafficking of the Notch Receptor

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1066))

Abstract

The endosomal pathway plays an important role in several aspects of Notch signalling ranging from ligand-dependent to independent activation and also degradation of the Notch receptor. Here, we will focus on its role during receptor degradation and describe the endosomal pathway with the components that are important for Notch degradation and the molecular machinery that orchestrates these events. Subsequently, we will describe the journey of Notch through the endosomal system and discuss the role of the genes involved. Mechanisms of the recently discovered ligand-independent activation of the Notch receptor in the endosomal pathway will be described and its contribution in physiologically Notch-dependent processes will be discussed. Last but not least, we will summarize the evidence for endosomal ligand-independent activation of the Notch pathway in vertebrates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAA-ATPase:

ATPase Associated with diverse cellular Activities

ADAM10:

A Disintegrin and metalloprotease 10

Aki1:

Akt Kinase-Interacting Protein 1

ANK:

Ankyrin

AP:

Adaptor Protein

CADASIL:

Cerebral Autosomal Dominant Artheriopathy with Subcortical Infarcts and Leukoencephalopathy

Cbl:

Casistas B-lineage lymphoma

CC2D1A:

Coiled-Coil and C2 domain-containing protein 1A

CC2D1B:

Coiled-Coil and C2 domain-containing protein 1B

CCZ1:

Calcium-Caffeine-zinc sensititivity protein

CHMP:

Charged multivesicular body protein

COMMD9:

COMM (Copper metabolism) domain containing protein 9

CORVET:

class C core vacuole/endosome tethering

Crb:

Crumbs

CSL:

CBF-1, Suppressor of Hairless, LAG-1

Dl:

Delta

Dll3:

Delta-like 3

DM14:

Drosophila melanogaster 14

dNedd4:

Neural precursor cell expressed developmentally downregulated protein 4

DSL:

(Delta/Serrate/LAG-2)

Dx:

Deltex

EE:

Early Endosome

EE2A:

early endosomal antigene 2

EEVs:

Early Endosomal Vesicles

EGF:

Epidermal growth factor

ESCRT:

Endosomal sorting complex required for transport

FGF:

Fibroblast growth factor

Freud-1:

FRE under Dual Repression-Binding-Protein 1

Freud-2:

FRE under Dual Repression-Binding-Protein 2

FYVE:

Fab1 YOTB VAC1 EEA1

GAP:

GTPase activating protein

GDF:

GTPase dissociation factor

GDI:

GDP-dissociation inhibitor

GDP:

Guanosine diphosphate

GEF:

Guanine nucleotide exchange factor

GFP:

Green fluorescent protein

GPI:

Glycosylphosphatidylinositol

GTP:

Guanosine triphosphate

HOPS:

homotypic fusion and protein sorting

Hrs:

Hepatocyte growth factor-regulated tyrosine kinase substrate

Hsc70:

Heat shock cognate70

ICD:

intracellular domain

ILV:

intraluminal vesicle

Kuz:

Kuzbanian

Lamp:

Lysosome-associated membrane glycoprotein

Lgd:

Lethal giant discs

LNR:

Lin-12 / Notch repeat

ME:

Maturing Endosome

Mon1:

Monensin sensitivity protein 1

MVB:

Multivesicular body

NECD:

Notch extracellular domain

NEXT:

Notch extracellular truncation

NICD:

Notch intracellular domain

NRR:

Negative Regulatory Region

PEST:

Proline (P), Glutamic acid (E), Serine (S), Threonin(T)

PI(3,5)P2:

Phosphatidylinositol 3,5-bisphoshphate

PI3P:

Phosphatidylinositol 3-phosphate

Rab:

ras-related in brain

RAM:

RBPJ-associated molecule

RBPJ:

recombination signal binding protein for immunoglobulin kappa J region

RE:

Recycling Endosome

RME8:

Receptor mediated Endocytosis 8

Ser:

Serrate

Shrb:

Shrub

SNARE:

soluble N-ethylmaleimide-sensitive-factor attachment receptor

SNX:

Sorting nexin

Stam:

Signal transducing adaptor molecule

Su(Dx):

Suppressor of Deltex

Su(H):

Suppressor of Hairless

TAPE:

TBK1-associated Protein in Endolysosomes

TMPs:

Transmembrane proteins

Tsg101:

tumor susceptibility gene 101

Ub:

Ubiquitin

UIM:

ubiquitin interacting motif

Vps:

Vacoular protein sorting

References

  • Aster JC, Pear WS, Blacklow SC (2017) The varied roles of Notch in cancer. Annu Rev Pathol Mech Dis 12:245–275

    Article  CAS  Google Scholar 

  • Balderhaar HJ, Ungermann C (2013) CORVET and HOPS tethering complexes–coordinators of endosome and lysosome fusion. J Cell Sci 126:1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Berns N, Woichansky I, Friedrichsen S, Kraft N, Riechmann V (2014) A genome-scale in vivo RNAi analysis of epithelial development in Drosophila identifies new proliferation domains outside of the stem cell niche. JCS 127:2736–2748

    Article  CAS  Google Scholar 

  • Cabrera M, Ungermann C (2013) Guanine nucleotide exchange factors (GEFs) have a critical but not exclusive role in organelle localization of Rab GTPases. JBC 288:28704–28712

    Article  CAS  Google Scholar 

  • Cabrera M, Engelbrecht-Vandré S, Ungermann C (2014) Function of the Mon1-Ccz1 complex on endosomes. Small GTPases 3:1–3

    Google Scholar 

  • Chastagner P, Israel A, Brou C (2006) Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep 7:1147–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chastagner P, Israel A, Brou C (2008) AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS One 3:e2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chastagner P, Rubinstein E, Brou C (2017) Ligand-activated Notch undergoes DTX4-mediated ubiquitylation and bilateral endocytosis before ADAM10 processing. Sci Signal 10:1–13

    Article  Google Scholar 

  • Childress JL, Acar M, Tao C, Halder G (2006) Lethal Giant discs, a novel C2-domain protein, restricts notch activation during endocytosis. Curr Biol 16:1–6

    Article  CAS  Google Scholar 

  • Cotter K, Stransky L, McGuire C, Forgac M (2015) Recent insights into the structure, regulation, and function of the V-ATPases. Trends Biochem Sci 10:611–622

    Article  CAS  Google Scholar 

  • Couturier L, Trylinski M, Mazouni K, Darnet L, Schweisguth F (2014) A fluorescent tagging approach in Drosophila reveals late endosomal trafficking of Notch and Sanpodo. J Cell Biol 207:351–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dell’Angelica EC (2009) AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol 21:552–559

    Article  CAS  PubMed  Google Scholar 

  • Dobrowolski R, De Robertis E (2012) Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat Rev Mol Biol 13:53–60

    Article  CAS  Google Scholar 

  • Dodson EJ, Fishbain-Yoskovitz V, Rotem-Bamberger S, Schueler-Furman O (2015) Versatile communication strategies among tandem WW domain repeats. Exp Biol Med (Maywood) 3:351–360

    Article  CAS  Google Scholar 

  • Drusenheimer N, Migdal B, Jäckel S, Tveriakhina L, Scheider K, Schulz K, Gröper J, Köhrer K, Klein T (2015) The mammalian orthologs of Drosophila Lgd, CC2D1A and CC2D1B, function in the endocytic pathway, but their individual loss of function does not affect notch signalling. PLoS Genet 11(12):e1005749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fostier M, Evans DA, Artavanis-Tsakonas S, Baron M (1998) Genetic characterization of the Drosophila melanogaster suppressor of deltex gene: a regulator of notch signaling. Genetics 150:1477–1485

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fuwa TJ, Hori K, Sasamura T, Higgs J, Baron M, Matsuno K (2006) The first deltex null mutant indicates tissue-specific deltex-dependent Notch signaling in Drosophila. Mol Gen Genomics 275:251–263

    Article  CAS  Google Scholar 

  • Gallagher CM, Knoblich J (2006) The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Dev Cell 11:641–653

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko JV, Tepikin AV, Petersen OH, Gerasimenko OV (1998) Calcium uptake via endocytosis with rapid release from acidifying endosomes. Curr Biol 8:1335–1338

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Lamarca MJ, Snowdon LA, Seib E, Klein T, Bray SJ (2015) Rme-8 depletion perturbs Notch recycling and predisposes to pathogenic signaling. JBC 210:303–318

    CAS  Google Scholar 

  • Gupta-Rossi N, Six E, LeBail O, Logeat F, Chastagner P, Olry A, Israel A, Brou C (2004) Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor. J Cell Biol 166:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handschuh K, Feenstra J, Koss M, Ferretti E, Risolino M, Zewdu R, Sahai MA, Bénazet JD, Peng XP, Depew MJ et al (2014) ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling. Cell Rep 9:674–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haugsten EM, Malecki J, Bjørklund SM, Olsnes S, Wesche J (2008) Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis. Mol Biol Cell 8:3390–3403

    Article  Google Scholar 

  • Heuss SF, Ndiaye-Lobry D, Six E, Israel A, Logeat F (2008) The intracellular region of Notch ligands Dll1 and Dll3 regulates their trafficking and signalling activity. PNAS 105:11212–11217

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Fostier M, Ito M, Fuwa TJ, Go MJ, Okano H, Baron M, Matsuno K (2004) Drosophila deltex mediates suppressor of Hairless-independent and late-endosomal activation of notch signaling. Development 131:5527–5537

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Sen A, Kirchhausen T, Artavanis-Tsakonas S (2011) Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. J Cell Biol 195:1005–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori K, Kirchhausen T, Artavanis-Tsakonas S (2012) Regulation of ligand-independent Notch signal through intracellular trafficking. Comm Integr Biol 5:374–376

    Article  CAS  Google Scholar 

  • Huang F, Goh LK, Sorkin A (2007) EGF receptor ubiquitination is not necessary for its internalisation. PNAS 104:16904–16909

    Article  PubMed  Google Scholar 

  • Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JH (2010) The ESCRT complexes. Crit Rev Biochem Mol Biol 45:463–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JH (2015) ESCRTs are everywhere. EMBO J 34:2398–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaekel R, Klein T (2006) The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Dev Cell 11:655–669

    Article  CAS  PubMed  Google Scholar 

  • Jekely G, Rorth P (2003) Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO Rep 4:1164–1168

    Google Scholar 

  • Kandachar V, Roegiers F (2012) Endocytosis and control of Notch signaling. Curr Opin Cell Biol 4:534–540

    Article  CAS  Google Scholar 

  • Kinchen JM, Ravichandran KS (2010) Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 464:778–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishi N, Tang Z, Maeda Y, Hirai A, Mo R, Ito M, Suzuki S, Nakao K, Kinoshita T, Kadesch T et al (2001) Murine homologs of deltex define a novel gene family involved in vertebrate Notch signaling and neurogenesis. Int J Dev Neurosci 19:21–35

    Article  CAS  PubMed  Google Scholar 

  • Klein T (2003) The tumour suppressor gene l(2)giant discs is required to restrict the activity of Notch to the dorsoventral boundary during Drosophila wing development. Dev Biol 255:313–333

    Article  CAS  PubMed  Google Scholar 

  • Kovall RA, Gebelein B, Sprinzak D, Kopan R (2017) The canonical Notch signalling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell 41:228–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legent K, Liu HH, Treisman JE (2015) Drosophila Vps4 promotes epidermal growth factor receptor signaling independently of its role in receptor degradation. Development 142:1480–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehar SM, Bevan MJ (2006) T cells develop normally in the absence of both Deltex1 and Deltex2. Mol Cell Biol 26:7358–7371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitch CC, Lodh S, Prieto-Echagüe V, Badano JL, Zaghloul NA (2014) Basal body proteins regulate Notch signaling through endosomal trafficking. J Cell Sci 127:2407–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Koo Y, Mao X, Sifuentes-Dominguez L, Morris LL, Jia D, Miyata N, Faulkner RA, van Deursen JM, Vooijs M et al (2015) Endosomal sorting of Notch receptors through COM MD9-dependent pathways modulates Notch signaling. JBC 211:605–617

    CAS  Google Scholar 

  • Lu H, Bilder D (2005) Endocytic control of epithelial polarity and proliferation in Drosophila. Nat Cell Biol 7:1132–1139

    Google Scholar 

  • Maillard I, Weng AP, Carpenter AC, Rodriguez CG, Sai H, Xu L, Allman D, Aster JC, Pear WS (2004) Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104:1696–1702

    Article  CAS  PubMed  Google Scholar 

  • Manzini MC, Xiong L, Shaheen R, Tambunan DE, Di Costanzo S, Mitisalis V, Tischfield DJ, Cinquino A, Ghaziuddin M, Christian M et al (2014) CC2D1A regulates human intellectual and social function as well as NF-κB signaling homeostasis. Cell Rep 8:647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mašek J, Andersson ER (2017) The developmental biology of genetic Notch disorders. Development 144:1743–1763

    Article  CAS  PubMed  Google Scholar 

  • Matsuno K, Eastman D, Mitsiades T, Quinn AM, Carcanciu ML, Ordentlich P, Kadesch T, Artavanis-Tsakonas S (1998) Human deltex is a conserved regulator of Notch signalling. Nat Genet 19:74–78

    Article  CAS  PubMed  Google Scholar 

  • Matsuno K, Ito M, Hori K, Miyashita F, Suzuki S, KIshi N, Artavanis-Tsakonas S, Okano H (2002) Involvement of a proline rich motif and RING-H2 finger of Deltex in the regulation of Notch-signaling. Development 129:1049–1159

    PubMed  CAS  Google Scholar 

  • Maxfield FR, Yamashiro DJ (1987) Endosome acidification and the pathways of receptor-mediated endocytosis. Adv Exp Med Biol 225:189–198

    Article  CAS  PubMed  Google Scholar 

  • McMillan BJ, Tibbe C, Jeon H, Drabek AA, Klein T, Blacklow SC (2016) Electrostatic interactions between elongated monomers drive filamentation of Drosophila shrub, a Metazoan ESCRT-III Protein. Cell Rep 16:1211–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillan BJ, Tibbe C, Drabek AA, Seegar TCM, Blacklow SC, Klein T (2017) Structural basis for regulation of ESCRT-III complexes by Lgd. Cell Rep 19:1–8

    Article  CAS  Google Scholar 

  • Moberg KH, Schelble S, Burdick SK, Hariharan IK (2005) Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell 9:699–710

    Article  CAS  PubMed  Google Scholar 

  • Moretti J, Brou C (2013) Ubiquitinations in the Notch signalling pathway. Int J Mol Sci 14:6359–6381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Veraksa A, Bauer A, Rosse C, Camonis J, Artavanis-Tsakonas S (2005) Regulation of Notch signalling by non-visual ß-arrestin. Nat Cell Biol 7:1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee T, Kim WS, Mandal L, Banerjee U (2011) Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332:1210–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsu F, Ohno H (2003) The epsin protein family: coordinators of endocytosis and signaling. Cell Struct Funct 28:419–429

    Article  CAS  PubMed  Google Scholar 

  • Nemetschke L, Knust E (2016) Drosophila Crumbs prevents ectopic Notch activation in developing wings by inhibiting ligand-independent endocytosis. Development 143:4543–4553

    Article  CAS  PubMed  Google Scholar 

  • Nordmann M, Cabrera M, Perz A, Bröcker C, Ostrowicz C, Engelbrecht-Vandré S, Ungermann C (2010) The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol 20:1654–1659

    Article  CAS  PubMed  Google Scholar 

  • Norrisa A, Tamminenib P, Wanga S, Gerdesa J, Murra A, Kwanc KY, Caib I, Granta BD (2017) SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. PNAS 3:E307–E316

    Article  CAS  Google Scholar 

  • Palmer WH, Jia D, Deng W (2014) Cis-interactions between Notch and its ligands block ligand-independent Notch activity. elife 3:e04415

    Article  PubMed Central  Google Scholar 

  • Pocha SM, Wassmer T, Niehage C, Hoflack B, Knust E (2011) Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr Biol 21(13):1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Portela M, Parsons LM, Grzeschik NA, Richardson HE (2015) Regulation of Notch signaling and endocytosis by the Lgl neoplastic tumor suppressor. Cell Cycle 14:1496–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poteryaev D, Datta S, Ackema K, Zerial M, Spang A (2010) Identification of the switch in early-to-late endosome transition. Cell 14:497–508

    Article  CAS  Google Scholar 

  • Raiborg C, Slagsvold T, Stenmark H (2006) A new side to ubiquitin. Trends Biochem Sci 10:541–544

    Article  CAS  Google Scholar 

  • Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J, Aster JC (2000) Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol 5:1825–1835

    Article  Google Scholar 

  • Ren X, Hurley JH (2010) VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J 29:1045–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749

    Article  CAS  PubMed  Google Scholar 

  • Rusten TE, Rodahl LM, Pattni K, Englund C, Samakovlis C, Dove S, Brech A, Stenmark H (2006) Fab1 phosphatidylinositol 3-phosphate 5-kinase controls trafficking but not silencing of endocytosed receptors. Mol Biol Cell 9:3989–4001

    Article  Google Scholar 

  • Sakata T, Sakaguchi H, Tsuda L, Higashitani A, Aigaki T, Matsuno K, Hayashi S (2004) Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr Biol 14:2228–2236

    Article  CAS  PubMed  Google Scholar 

  • Schmidt O, Teis D (2012) The ESCRT machinery. Curr Biol 22:R116–R120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider M, Troost T, Grawe F, Martinez-Arias A, Klein T (2012) Activation of Notch in lgd mutant cells requires the fusion of late endosomes with the lysosome. J Cell Sci 126:645–656

    Article  CAS  PubMed  Google Scholar 

  • Schöneberg J, Lee IH, Iwasa JH, Hurley JH (2017) Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol 18:5–17

    Article  CAS  PubMed  Google Scholar 

  • Schröder B, Saftig P (2016) Intramembrane proteolysis within lysosomes. Ageing Res Rev 32:51–64

    Article  CAS  PubMed  Google Scholar 

  • Schwake M, Schröder B, Saftig P (2013) Lysosomal membrane proteins and their central role in physiology. Traffic 14:739–748

    Article  CAS  PubMed  Google Scholar 

  • Schweisguth F (2015) Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision. Wiley Interdiscip Rev Dev Biol. https://doi.org/10.1002/wdev.175

  • Sen A, Madhivanan K, Mukherjee D, Aguilar RC (2012) The epsin protein family: coordinators of endocytosis and signaling. Biomol Concepts 2:117–126

    Google Scholar 

  • Shaye DD, Greenwald I (2005) LIN-12/Notch trafficking and regulation of DSL ligand activity during vulval induction in Caenorhabditis elegans. Development 132:5081–5092

    Article  CAS  PubMed  Google Scholar 

  • Shim JH, Xiao C, Hayden MS, Lee KY, Trombetta ES, Pypaert M, Nara A, Yoshimori T, Wilm B, Erdjument-Bromage H et al (2006) CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogensis. JCB 172:1045–1056

    Google Scholar 

  • Shimizu H, Woodcock SA, Wilkin MB, Trubenová B, Monk NA, Baron M (2014) Compensatory flux changes within an endocytic trafficking network maintain thermal robustness of Notch signaling. Cell 5:1160–1174

    Article  CAS  Google Scholar 

  • Struhl G, Adachi A (2000) Requirements for Presenillin-dependent cleavage of Notch and other transmembrane proteins. Mol Cell 6:625–636

    Article  CAS  PubMed  Google Scholar 

  • Sweeney NT, Brennan JE, Jan YN, Gao FB (2006) The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Curr Biol 16:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Thompson BJ, Mathieu J, Sung HH, Loeser E, Rorth P, Cohen SM (2005) Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev Cell 9:711–720

    Article  CAS  PubMed  Google Scholar 

  • Tognon E, Wollscheid N, Cortese K, Tacchetti C, Vaccari T (2014) ESCRT-0 is not required for ectopic Notch activation and tumor suppression in Drosophila. PLoS One 9:e93987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troost T, Jaeckel S, Ohlenhard N, Klein T (2012) The tumour suppressor Lethal (2) giant discs is required for the function of the ESCRT-III component Shrub/CHMP4. JCS 125:763–776

    Article  CAS  Google Scholar 

  • Vaccari T, Lu H, Kanwar R, Fortini M, Bilder D (2008) Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J Cell Biol 180:755–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaccari T, Rusten TE, Menut L, Nezis IP, Brech A, Stenmark H, Bilder D (2009) Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants. J Cell Sci 122:2413–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Ming Z, Xiaochun W, Hong W (2011) Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal 3:516–521

    Article  CAS  Google Scholar 

  • Wegner CS, Rodahl LM, Stenmark H (2011) ESCRT proteins and cell signalling. Traffic 10:1291–1997

    Article  CAS  Google Scholar 

  • Wilkin MB, Carbery AM, Fostier M, Aslam H, Mazaleyrat SL, Higgs J, Myat A, Evans DA, Cornell M, Baron M (2004) Regulation of notch endosomal sorting and signaling by Drosophila Nedd4 family proteins. Curr Biol 14:2237–2244

    Article  CAS  PubMed  Google Scholar 

  • Wilkin M, Tongngok P, Gensch N, Clemence S, Motoki M, Yamada K, Hori K, Taniguchi-Kanai M, Franklin E, Matsuno K et al (2008) Drosophila HOPS and AP-3 complex genes are required for a Deltex-regulated activation of notch in the endosomal trafficking pathway. Dev Cell 15:762–772

    Article  CAS  PubMed  Google Scholar 

  • Windler SL, Bilder D (2010) Endocytic internalization routes required for Delta/Notch signaling. Curr Biol 20:538–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollert T, Hurley JH (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 484:864–869

    Article  CAS  Google Scholar 

  • Yamada K, Fuwa TJ, Ayukawa T, Tanaka T, Nakamura A, Wilkin M, Baron M, Matsuno K (2011) Roles of Drosophila Deltex in Notch receptor endocytic trafficking and activation. Genes Cells 16:261–272

    Article  CAS  PubMed  Google Scholar 

  • Yaron A, Sprinzak D (2011) The cis side of juxtacrine signaling: a new role in the development of the nervous system. Trends Neurosci 35:230–239

    Article  CAS  Google Scholar 

  • Yousefian J, Troost T, Grawe F, Sasamura T, Fortini M, Klein T (2013) Dmon1 controls recruitment of Rab7 to maturing endosomes in Drosophila. JCS 126:1583–1594

    Article  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Cell Biol 2:107–119

    Article  CAS  Google Scholar 

  • Zhenga L, Saundersa CA, Sorensenb EB, Waxmonskya NC, Conner SD (2013) Notch signaling from the endosome requires a conserved dileucine motif. MBoC 24:297–307

    Article  Google Scholar 

  • Zhou B, Wu Y, Lin X (2011) Retromer regulates apical-basal polarity through recycling Crumbs. Dev Biol 360:87–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the Klein lab is supported by the Deutsche Forschungsgemeinschaft (DFG) through SFB 1208 “Identity and Dynamics of Membrane Systems-from Molecules to Cellular Functions “and Sachbeihilfe KL-1028/9-1 and KL-1028/8-1. We apologise to every researchers whose publications are not cited due to restrictions in space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schnute, B., Troost, T., Klein, T. (2018). Endocytic Trafficking of the Notch Receptor. In: Borggrefe, T., Giaimo, B. (eds) Molecular Mechanisms of Notch Signaling. Advances in Experimental Medicine and Biology, vol 1066. Springer, Cham. https://doi.org/10.1007/978-3-319-89512-3_6

Download citation

Publish with us

Policies and ethics