Skip to main content

A New Approach to Design Glove-Like Wearable Hand Exoskeletons for Rehabilitation

  • Conference paper
  • First Online:
ROMANSY 22 – Robot Design, Dynamics and Control

Abstract

The synthesis of hand exoskeletons for rehabilitation is a challenging theoretical and technical task. A huge number of solutions have been proposed in the literature. Most of them are based on the concept to consider the phalanges of the finger as fixed to some links of the exoskeleton mechanism. This approach makes the exoskeleton synthesis a difficult problem that compels the designer to devise approximate technical solutions which, frequently, reduce the efficiency of the rehabilitation system and are rather bulky.

This paper proposes a different approach. Namely, the phalanges are not fixed to some links of the exoskeleton, but they can have a relative motion, with one or two degrees of freedom when planar systems are considered. An example is presented to show the potentiality of this approach, which makes it possible: (i) to design glove-like exoskeletons that only approximate the human finger motion; (ii) to leave the fingers have their natural motion; (iii) to adapt a wider range of patient hand sizes to a given hand exoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, P., Hechanova, A., Deshpande, A.D.: Kinematics and Dynamics of a biologically inspired index finger exoskeleton. In: Proceedings of the ASME 2013 Dynamic Systems and Control Conference DSCC 2013, Palo Alto, CA, USA, pp. 1–10 (2013)

    Google Scholar 

  2. Heo, P., Min, GuG, Lee, S.J., Rhee, K., Kim, J.: Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 3(5), 807–824 (2012)

    Article  Google Scholar 

  3. Balasubramanian, S., Klein, J., Burdet, E.: Robot-assisted rehabilitation and hand function. Curr. Opin. Neurol. 23, 661–670 (2010)

    Article  Google Scholar 

  4. Troncossi, M., Mozaffari-Foumashi, M., Parenti-Castelli, V.: An original classification of rehabilitation hand exoskeletons. J. Robot. Mech. Eng. Res. 1(4), 17–29 (2016)

    Article  Google Scholar 

  5. Abdallah, I.B., Bouteraa, Y., Rekik, C.: Design and development of 3D printed myoelectric robotic exoskeleton for hand rehabilitation. Int. J. Smart Sens. Intell. Syst. 10(2), 341–366 (2017)

    Google Scholar 

  6. Foumashi, M., Troncossi, M., Parenti-Castelli, V.: Design of a new hand exo-skeleton for rehabilitation of post-stroke patients. In: Romansy 19-Robot Design, Dynamics and Control, pp. 159–169 (2013)

    Chapter  Google Scholar 

  7. Yap, H.K., Hoon, J., Nashrallah, F., Goh, J.C.H., Yeow, R.C.H.: A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness. In: 2015 IEEE International Conference on Robotics and Automation, ICRA, Seattle, Washington, USA, pp. 4967–4972 (2015)

    Google Scholar 

  8. Arata, J., Ohmoto, K., Gassert, R., Lambercy, O., Fujimoto, H., Wada, I.: A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism. In: 2013 IEEE International Conference on Robotics and Automation, ICRA, Karlsruhe, Germany, pp. 3902–3907 (2013)

    Google Scholar 

  9. Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, M., Parenti, C.V., Procopio, C., Lamola, G., Chisari, C., Bergamasco, M., Frisoli, A.: An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. J. Haptics 8(2), 140–151 (2015)

    Article  Google Scholar 

  10. Gulke, J., Watcher, N.J., Geyer, T., Scholl, H., Apic, G., Mentzler, M., et al.: Motion coordination pattern during cylinder grip analyzed with a sensor glove. J. Hand Surg. 35(5), 797 (2010)

    Article  Google Scholar 

  11. Li, J., Wang, S., Zheng, R., Zhang, Y., Chen, Z.: Development of a hand exoskeleton system for index finger rehabilitation. Chin. J. Mech. Eng. 25(2), 223–233 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Luzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luzi, L., Sancisi, N., Castelli, V.P. (2019). A New Approach to Design Glove-Like Wearable Hand Exoskeletons for Rehabilitation. In: Arakelian, V., Wenger, P. (eds) ROMANSY 22 – Robot Design, Dynamics and Control. CISM International Centre for Mechanical Sciences, vol 584. Springer, Cham. https://doi.org/10.1007/978-3-319-78963-7_63

Download citation

Publish with us

Policies and ethics