Skip to main content

Cardiovascular Sequels During and After Preeclampsia

  • Chapter
  • First Online:
Sex-Specific Analysis of Cardiovascular Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1065))

Abstract

Preeclampsia is a pregnancy-specific disorder complicating 2%–8% of pregnancies worldwide and characterized by de novo development of hypertension and proteinuria. Current understanding of the pathophysiology of preeclampsia is limited. A main feature is disrupted spiral artery remodeling in the placenta, which restricts the blood flow to the placenta, which in turn leads to decreased uteroplacental perfusion. Impaired blood flow through the placenta might result in fetal growth restriction and secretion of several factors by the placenta—mainly pro-inflammatory cytokines and anti-angiogenic factors—which spread into the maternal circulation, leading to endothelial dysfunction, which subsequently results in disrupted maternal hemodynamics. To date, no treatment options are available apart from termination of pregnancy. Despite normalization of the maternal vascular disturbances after birth, it has become apparent that formerly preeclamptic women experience an increased risk to develop cardiovascular and kidney disease later in life. One well-accepted concept is that the development of preeclampsia is an indicator of maternal susceptibility to develop future cardiovascular conditions, although the increased risk might also be the result of organ damage caused during preeclampsia. Given the associations between preeclampsia and long-term complications, preeclampsia is acknowledged as woman-specific risk factor for cardiovascular disease. Current research focuses on finding effective screening and prevention strategies for the reduction of cardiovascular disease in women with a history of preeclampsia.

Pregnancy-specific disorders. Artwork by Piet Michiels, Leuven, Belgium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hernandez-Diaz S, Toh S, Cnattingius S. Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study. BMJ. 2009;338:b2255.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365(9461):785–99.

    Article  PubMed  Google Scholar 

  3. American College of Obstetricians and Gynecologists, Task force Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31.

    Google Scholar 

  4. Tranquilli AL, Dekker G, Magee L, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Pregnancy Hypertens. 2014;4(2):97–104.

    Article  PubMed  CAS  Google Scholar 

  5. Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens pregnancy. 2001;20(1):IX–XIV.

    Article  PubMed  CAS  Google Scholar 

  6. Schaap TP, Knight M, Zwart JJ, et al. Eclampsia, a comparison within the International Network of Obstetric Survey Systems. BJOG. 2014;121(12):1521–8.

    Article  PubMed  CAS  Google Scholar 

  7. A review of maternal deaths in South Africa during 1998. National Committee on Confidential Enquiries into Maternal Deaths. S Afr Med J. 2000;90(4):367–73.

    Google Scholar 

  8. Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol (New York, NY 1989). 2010;63(6):534–43.

    Article  CAS  Google Scholar 

  9. Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9–10):939–58.

    Article  PubMed  CAS  Google Scholar 

  10. Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lau SY, Barrett CJ, Guild S-J, Chamley LW. Necrotic trophoblast debris increases blood pressure during pregnancy. J Reprod Immunol. 2013;97(2):175–82.

    Article  PubMed  Google Scholar 

  12. Schobel HP, Fischer T, Heuszer K, Geiger H, Schmieder RE. Preeclampsia—a state of sympathetic overactivity. N Engl J Med. 1996;335(20):1480–5.

    Article  PubMed  CAS  Google Scholar 

  13. van Beck E, Peeters LL. Pathogenesis of preeclampsia: a comprehensive model. Obstet Gynecol Surv. 1998;53(4):233–9.

    Article  PubMed  Google Scholar 

  14. Fischer T, Schobel HP, Frank H, Andreae M, Schneider KTM, Heusser K. Pregnancy-induced sympathetic overactivity: a precursor of preeclampsia. Eur J Clin Invest. 2004;34(6):443–8.

    Article  PubMed  CAS  Google Scholar 

  15. Cui Y, Wang W, Dong N, et al. Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature. 2012;484(7393):246–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhou Y, Wu Q. Role of corin and atrial natriuretic peptide in preeclampsia. Placenta. 2013;34(2):89–94.

    Article  PubMed  CAS  Google Scholar 

  17. Raymond D, Peterson E. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv. 2011;66(8):497–506.

    Article  PubMed  Google Scholar 

  18. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308(5728):1592–4.

    Article  PubMed  CAS  Google Scholar 

  19. Falco ML, Sivanathan J, Laoreti A, Thilaganathan B, Khalil A. Placental histopathology associated with pre-eclampsia: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;50(3):295–301.

    Article  PubMed  CAS  Google Scholar 

  20. Sibai BM, Lindheimer M, Hauth J, et al. Risk factors for preeclampsia, abruptio placentae, and adverse neonatal outcomes among women with chronic hypertension. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med. 1998;339(10):667–71.

    Article  PubMed  CAS  Google Scholar 

  21. Verdonk K, Visser W, Van Den Meiracker AH, Danser AHJ. The renin-angiotensin-aldosterone system in pre-eclampsia: the delicate balance between good and bad. Clin Sci (Lond). 2014;126(8):537–44.

    Article  CAS  Google Scholar 

  22. Khalil A, Jauniaux E, Cooper D, Harrington K. Pulse wave analysis in normal pregnancy: a prospective longitudinal study. PLoS One. 2009;4(7):e6134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Boeldt DS, Yi FX, Bird IM. eNOS activation and NO function: pregnancy adaptive programming of capacitative entry responses alters nitric oxide (NO) output in vascular endothelium—new insights into eNOS regulation through adaptive cell signaling. J Endocrinol. 2011;210(3):243–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chaddha V, Viero S, Huppertz B, Kingdom J. Developmental biology of the placenta and the origins of placental insufficiency. Semin Fetal Neonatal Med. 2004;9(5):357–69.

    Article  PubMed  Google Scholar 

  25. Gant NF, Chand S, Whalley PJ, MacDonald PC. The nature of pressor responsiveness to angiotensin II in human pregnancy. Obstet Gynecol. 1974;43(6):854.

    PubMed  CAS  Google Scholar 

  26. van der Graaf AM, Toering TJ, Faas MM, Lely AT. From preeclampsia to renal disease: a role of angiogenic factors and the renin-angiotensin aldosterone system? Nephrol Dial Transplant [Internet]. 2012 [cited 2014 Oct 16];27(Suppl 3):iii51–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23115142

  27. Johal T, Lees CC, Everett TR, Wilkinson IB. The nitric oxide pathway and possible therapeutic options in pre-eclampsia. Br J Clin Pharmacol. 2014;78(2):244–57.

    Article  PubMed  CAS  Google Scholar 

  28. López-Jaramillo P, Arenas WD, García RG, Rincon MY, López M. The role of the L-arginine-nitric oxide pathway in preeclampsia. Ther Adv Cardiovasc Dis [Internet]. 2008;2(4):261–75. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L352219675

    Article  Google Scholar 

  29. Friedman SA. Preeclampsia: a review of the role of prostaglandins. Obstet Gynecol. 1988;71(1):122–37.

    PubMed  CAS  Google Scholar 

  30. Valensise H, Novelli GP, Vasapollo B, et al. Maternal diastolic dysfunction and left ventricular geometry in gestational hypertension. Hypertens (Dallas, Tex 1979). 2001;37(5):1209–15.

    Article  CAS  Google Scholar 

  31. Melchiorre K, Sutherland GR, Baltabaeva A, Liberati M, Thilaganathan B. Maternal cardiac dysfunction and remodeling in women with preeclampsia at term. Hypertens (Dallas, Tex 1979). 2011;57(1):85–93.

    Article  CAS  Google Scholar 

  32. Borges VTM, Zanati SG, PeraColi MTS, et al. Maternal hypertrophy and diastolic disfunction and brain natriuretic peptide concentration in early and late pre-Eclampsia. Ultrasound Obstet Gynecol. 2017;51:591–23.

    Google Scholar 

  33. Shahul S, Medvedofsky D, Wenger JB, et al. Circulating antiangiogenic factors and myocardial dysfunction in hypertensive disorders of pregnancy. Hypertension. 2016;67(6):1273–80.

    Article  PubMed  CAS  Google Scholar 

  34. Hammadah M, Georgiopoulou VV, Kalogeropoulos AP, et al. Elevated soluble Fms-like tyrosine kinase-1 and placental-like growth factor levels are associated with development and mortality risk in heart failure. Circ Heart Fail. 2016;9(1):e002115.

    Article  PubMed  CAS  Google Scholar 

  35. Groarke JD, Choueiri TK, Slosky D, Cheng S, Moslehi J. Recognizing and managing left ventricular dysfunction associated with therapeutic inhibition of the vascular endothelial growth factor signaling pathway. Curr Treat Options Cardiovasc Med. 2014;16(9):335.

    Article  PubMed  Google Scholar 

  36. Kapur NK, Heffernan KS, Yunis AA, et al. Elevated soluble fms-like tyrosine kinase-1 levels in acute coronary occlusion. Arterioscler Thromb Vasc Biol. 2011;31(2):443–50.

    Article  PubMed  CAS  Google Scholar 

  37. Kapur NK, Wilson S, Yunis AA, et al. Reduced endoglin activity limits cardiac fibrosis and improves survival in heart failure. Circulation. 2012;125(22):2728–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cornelis T, Odutayo A, Keunen J, Hladunewich M. The kidney in normal pregnancy and preeclampsia. Semin Nephrol. 2011;31(1):4–14.

    Article  PubMed  CAS  Google Scholar 

  39. Lafayette RA, Druzin M, Sibley R, et al. Nature of glomerular dysfunction in pre-eclampsia. Kidney Int. 1998;54(4):1240–9.

    Article  PubMed  CAS  Google Scholar 

  40. Stillman IE, Karumanchi SA. The glomerular injury of preeclampsia. J Am Soc Nephrol. 2007;18(8):2281–4.

    Article  PubMed  Google Scholar 

  41. Rolnik DL, Wright D, Poon LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377(7):613–22.

    Article  PubMed  CAS  Google Scholar 

  42. López-Jaramillo P. Prevention of preeclampsia with calcium supplementation and its relation with the L-arginine:nitric oxide pathway. Braz J Med Biol Res [Internet]. 1996;29(6):731–41. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L26225692

    Google Scholar 

  43. Ahmed A. Molecular mechanisms and therapeutic implications of the carbon monoxide/hmox1 and the hydrogen sulfide/CSE pathways in the prevention of pre-eclampsia and fetal growth restriction. Pregnancy Hypertens. 2014;4(3):243–4.

    Article  PubMed  Google Scholar 

  44. Holwerda KM, Faas MM, van Goor H, Lely AT. Gasotransmitters: a solution for the therapeutic dilemma in preeclampsia? Hypertension [Internet] 2013 [cited 2014 Oct 16]; 62(4):653–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23959552

  45. Woods AK, Hoffmann DS, Weydert CJ, et al. Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice. Hypertens (Dallas, Tex 1979). 2011;57(1):94–102.

    Article  CAS  Google Scholar 

  46. Thadhani R, Hagmann H, Schaarschmidt W, et al. Removal of soluble Fms-like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia. J Am Soc Nephrol. 2016;27(3):903–13.

    Article  PubMed  CAS  Google Scholar 

  47. Drost JT, Arpaci G, Ottervanger JP, et al. Cardiovascular risk factors in women 10 years post early preeclampsia: the Preeclampsia Risk EValuation in FEMales study (PREVFEM). Eur J Prev Cardiol. 2012;19(5):1138–44.

    Article  PubMed  Google Scholar 

  48. Mangos GJ, Spaan JJ, Pirabhahar S, Brown MA. Markers of cardiovascular disease risk after hypertension in pregnancy. J Hypertens. 2012;30(2):351–8.

    Article  PubMed  CAS  Google Scholar 

  49. Magnussen EB, Vatten LJ, Smith GD, Romundstad PR. Hypertensive disorders in pregnancy and subsequently measured cardiovascular risk factors. Obstet Gynecol. 2009;114(5):961–70.

    Article  PubMed  Google Scholar 

  50. Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53(6):944–51.

    Article  CAS  PubMed  Google Scholar 

  51. Lazdam M, de la Horra A, Diesch J, et al. Unique blood pressure characteristics in mother and offspring after early onset preeclampsia. Hypertension. 2012;60(5):1338–45.

    Article  PubMed  CAS  Google Scholar 

  52. Suzuki H, Watanabe Y, Arima H, Kobayashi K, Ohno Y, Kanno Y. Short- and long-term prognosis of blood pressure and kidney disease in women with a past history of preeclampsia. Clin Exp Nephrol [Internet]. 2008 [cited 2014 Nov 30];12(2):102–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18180874

    Article  PubMed  Google Scholar 

  53. Heida KY, Bots ML, de Groot CJ, et al. Cardiovascular risk management after reproductive and pregnancy-related disorders: a Dutch multidisciplinary evidence-based guideline. Eur J Prev Cardiol. 2016;23(17):1863–79.

    Article  PubMed  Google Scholar 

  54. Lykke JA, Paidas MJ, Triche EW, Langhoff-Roos J. Fetal growth and later maternal death, cardiovascular disease and diabetes. Acta Obstet Gynecol Scand. 2012;91(4):503–10.

    Article  PubMed  Google Scholar 

  55. Berends AL, de Groot CJ, Sijbrands EJ, et al. Shared constitutional risks for maternal vascular-related pregnancy complications and future cardiovascular disease. Hypertension. 2008;51(4):1034–41.

    Article  PubMed  CAS  Google Scholar 

  56. Brown MC, Best KE, Pearce MS, Waugh J, Robson SC, Bell R. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol. 2013;28(1):1–19.

    Article  PubMed  Google Scholar 

  57. Wu P, Haththotuwa R, Kwok CS, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10(2):e003497.

    Article  PubMed  Google Scholar 

  58. Riise HKR, Sulo G, Tell GS, et al. Incident coronary heart disease after preeclampsia: role of reduced fetal growth, preterm delivery, and parity. J Am Heart Assoc. 2017;6(3):e004158.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nilsson PM, Li X, Sundquist J, Sundquist K. Maternal cardiovascular disease risk in relation to the number of offspring born small for gestational age: national, multi-generational study of 2.7 million births. Acta Paediatr. 2009;98(6):985–9.

    Article  PubMed  Google Scholar 

  60. Zoet GA, Linstra KM, Bernsen MLE, et al. Stroke after pregnancy disorders. Eur J Obstet Gynecol Reprod Biol. 2017;215:264–6.

    Article  PubMed  Google Scholar 

  61. Männistö T, Mendola P, Vääräsmäki M, et al. Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation [Internet]. 2013 [cited 2014 Oct 16];127(6):681–90. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4151554&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wu C-C, Chen S-H, Ho C-H, et al. End-stage renal disease after hypertensive disorders in pregnancy. Am J Obstet Gynecol [Internet]. 2014 [cited 2014 Oct 16];210(2):147.e1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24060448

    Article  Google Scholar 

  63. Kattah AG, Scantlebury DC, Agarwal S, et al. Preeclampsia and ESRD: the role of shared risk factors. Am J Kidney Dis. 2016;69(4):498–505.

    Article  PubMed  PubMed Central  Google Scholar 

  64. McDonald SD, Han Z, Walsh MW, Gerstein HC, Devereaux PJ. Kidney disease after preeclampsia: a systematic review and meta-analysis. Am J Kidney Dis [Internet]. 2010 [cited 2014 Oct 16];55(6):1026–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20346562

    Article  PubMed  Google Scholar 

  65. Sandvik MK, Hallan S, Svarstad E, Vikse BE. Preeclampsia and prevalence of microalbuminuria 10 years later. Clin J Am Soc Nephrol [Internet]. 2013 [cited 2014 Oct 16];8(7):1126–34. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3700700&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Berks D, Steegers EA, Molas M, Visser W. Resolution of hypertension and proteinuria after preeclampsia. Obstet Gynecol. 2009;114(6):1307–14.

    Article  PubMed  Google Scholar 

  67. Paauw ND, Joles JA, Drost JT, et al. High-normal estimated glomerular filtration rate in early-onset preeclamptic women 10 years postpartum. Hypertension. 2016;68(6):1407–14.

    Article  PubMed  CAS  Google Scholar 

  68. Toering TJ, van der Graaf AM, Visser FW, et al. Higher filtration fraction in formerly early-onset preeclamptic women without comorbidity. Am J Physiol Physiol. 2015;308(8):F824–31.

    Article  CAS  Google Scholar 

  69. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev. 2012;8(5):293–300.

    CAS  Google Scholar 

  70. Weissgerber TL, Milic NM, Milin-Lazovic JS, Garovic VD. Impaired flow-mediated dilation before, during, and after preeclampsia: a systematic review and meta-analysis. Hypertension. 2016;67(2):415–23.

    PubMed  CAS  Google Scholar 

  71. Breetveld NM, Ghossein-Doha C, van Neer J, et al. Decreased endothelial function and increased subclinical heart failure in women, many years after pre-eclampsia. Ultrasound Obstet Gynecol. 2017;

    Google Scholar 

  72. Alma LJ, Bokslag A, Maas AHEM, Franx A, Paulus WJ, de Groot CJM. Shared biomarkers between female diastolic heart failure and pre-eclampsia: a systematic review and meta-analysis. ESC Hear Fail. 2017;4(2):88–98.

    Article  Google Scholar 

  73. Behrens I, Basit S, Lykke JA, et al. Association between hypertensive disorders of pregnancy and later risk of cardiomyopathy. JAMA. 2016;315(10):1026–33.

    Article  PubMed  CAS  Google Scholar 

  74. van Rijn BB, Nijdam M-E, Bruinse HW, et al. Cardiovascular disease risk factors in women with a history of early-onset preeclampsia. Obstet Gynecol [Internet] 2013 [cited 2014 Oct 16];121(5):1040–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23635741

  75. Hermes W, Franx A, van Pampus MG, et al. Cardiovascular risk factors in women who had hypertensive disorders late in pregnancy: a cohort study. Am J Obstet Gynecol [Internet]. 2013 [cited 2014 Oct 16];208(6):474.e1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23399350

    Article  Google Scholar 

  76. Heida KY, Franx A, van Rijn BB, et al. Earlier Age of Onset of Chronic Hypertension and Type 2 Diabetes Mellitus After a Hypertensive Disorder of Pregnancy or Gestational Diabetes Mellitus. Hypertens (Dallas, Tex 1979). 2015;66(6):1116–22.

    CAS  Google Scholar 

  77. van der Graaf AM, Toering TJ, van der Wiel MWK, et al. Angiotensin II responsiveness after preeclampsia: translational data from an experimental rat model and early-onset human preeclampsia. J Hypertens. 2017;35(12):2468–78.

    Article  PubMed  CAS  Google Scholar 

  78. Spaanderman ME, Ekhart TH, de Leeuw PW, Peeters LL. Angiotensin II sensitivity in nonpregnant formerly preeclamptic women and healthy parous controls. J Soc Gynecol Investig. 2004;11(6):416–22.

    Article  PubMed  CAS  Google Scholar 

  79. Hladunewich MA, Kingdom J, Odutayo A, et al. Postpartum assessment of the renin angiotensin system in women with previous severe, early-onset preeclampsia. J Clin Endocrinol Metab [Internet]. 2011 [cited 2014 Oct 16];96(11):3517–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21880804

    Article  CAS  Google Scholar 

  80. Saxena AR, Karumanchi SA, Brown NJ, Royle CM, McElrath TF, Seely EW. Increased sensitivity to angiotensin II is present postpartum in women with a history of hypertensive pregnancy. Hypertension [Internet]. 2010 [cited 2014 Oct 16];55(5):1239–45. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2880505&tool=pmcentrez&rendertype=abstract

    Article  PubMed  CAS  Google Scholar 

  81. Courtar DA, Spaanderman ME, Aardenburg R, Janssen BJ, Peeters LL. Low plasma volume coincides with sympathetic hyperactivity and reduced baroreflex sensitivity in formerly preeclamptic patients. J Soc Gynecol Investig. 2006;13(1):48–52.

    Article  PubMed  Google Scholar 

  82. Grand’Maison S, Pilote L, Okano M, Landry T, Dayan N. Markers of vascular dysfunction after hypertensive disorders of pregnancy: a systematic review and meta-analysis. Hypertension. 2016;68(6):1447–58.

    Article  PubMed  CAS  Google Scholar 

  83. Palti H, Rothschild E. Blood pressure and growth at 6 years of age among offsprings of mothers with hypertension of pregnancy. Early Hum Dev. 1989;19(4):263–9.

    Article  PubMed  CAS  Google Scholar 

  84. Seidman DS, Laor A, Gale R, Stevenson DK, Mashiach S, Danon YL. Pre-eclampsia and offspring’s blood pressure, cognitive ability and physical development at 17-years-of-age. Br J Obstet Gynaecol. 1991;98(10):1009–14.

    Article  PubMed  CAS  Google Scholar 

  85. Oglaend B, Forman MR, Romundstad PR, Nilsen ST, Vatten LJ. Blood pressure in early adolescence in the offspring of preeclamptic and normotensive pregnancies. J Hypertens. 2009;27(10):2051–4.

    Article  PubMed  CAS  Google Scholar 

  86. Tenhola S, Rahiala E, Halonen P, Vanninen E, Voutilainen R. Maternal preeclampsia predicts elevated blood pressure in 12-year-old children: evaluation by ambulatory blood pressure monitoring. Pediatr Res. 2006;59(2):320–4.

    Article  PubMed  Google Scholar 

  87. Fraser A, Nelson SM, Macdonald-Wallis C, Sattar N, Lawlor DA. Hypertensive disorders of pregnancy and cardiometabolic health in adolescent offspring. Hypertension. 2013;62(3):614–20.

    Article  PubMed  CAS  Google Scholar 

  88. Davis EF, Newton L, Lewandowski AJ, et al. Pre-eclampsia and offspring cardiovascular health: mechanistic insights from experimental studies. Clin Sci (Lond). 2012;123(2):53–72.

    Article  Google Scholar 

  89. Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJ. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke. 2009;40(4):1176–80.

    Article  PubMed  Google Scholar 

  90. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298(6673):564–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Barker DJ, Osmond C. Low birth weight and hypertension. BMJ. 1988;297(6641):134–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Law CM, Shiell AW. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens. 1996;14(8):935–41.

    Article  PubMed  CAS  Google Scholar 

  93. Barker DJ. Adult consequences of fetal growth restriction. Clin Obstet Gynecol. 2006;49(2):270–83.

    Article  PubMed  Google Scholar 

  94. Gallo LA, Tran M, Moritz KM, Jefferies AJ, Wlodek ME. Pregnancy in aged rats that were born small: cardiorenal and metabolic adaptations and second-generation fetal growth. FASEB J. 2012;26(10):4337–47.

    Article  PubMed  CAS  Google Scholar 

  95. Gallo LA, Tran M, Cullen-McEwen LA, et al. Transgenerational programming of fetal nephron deficits and sex-specific adult hypertension in rats. Reprod Fertil Dev. 2014;26(7):1032–43.

    Article  PubMed  Google Scholar 

  96. Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ. 2002;325(7356):157–60.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Craici I, Wagner S, Garovic VD. Preeclampsia and future cardiovascular risk: formal risk factor or failed stress test? Ther Adv Cardiovasc Dis. 2008;2(4):249–59.

    Article  PubMed  Google Scholar 

  98. White WM, Garrett AT, Craici IM, et al. Persistent urinary podocyte loss following preeclampsia may reflect subclinical renal injury. PLoS One. 2014;9(3):e92693.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rasmussen LG, Lykke JA, Staff AC. Angiogenic biomarkers in pregnancy: defining maternal and fetal health. Acta Obstet Gynecol Scand. 2015;94(8):820–32.

    Article  PubMed  CAS  Google Scholar 

  100. Elvan-Taspinar A, Bots ML, Franx A, Bruinse HW, Engelbert RH. Stiffness of the arterial wall, joints and skin in women with a history of pre-eclampsia. J Hypertens. 2005;23(1):147–51.

    Article  PubMed  Google Scholar 

  101. Yinon Y, Kingdom JCP, Odutayo A, et al. Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: insights into future vascular risk. Circulation [Internet]. 2010 [cited 2014 Oct 16];122(18):1846–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20956209

    Article  PubMed  CAS  Google Scholar 

  102. Everett TR, Mahendru AA, McEniery CM, Wilkinson IB, Lees CC. Effect of S-nitrosoglutathione on arterial stiffness in women with severe preeclampsia and healthy controls. Arch Dis Child Fetal Neonatal Ed [Internet]. 2012;97:A30. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L71393968

    Article  Google Scholar 

  103. Vikse BE, Irgens LM, Karumanchi SA, Thadhani R, Reisæter AV, Skjærven R. Familial factors in the association between preeclampsia and later ESRD. Clin J Am Soc Nephrol [Internet]. 2012 [cited 2014 Oct 16];7(11):1819–26. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3488941&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  104. Romundstad PR, Magnussen EB, Smith GD, Vatten LJ. Hypertension in pregnancy and later cardiovascular risk: common antecedents? Circulation. 2010;122(6):579–84.

    Article  PubMed  Google Scholar 

  105. Chambers JC, Fusi L, Malik IS, Haskard DO, De Swiet M, Kooner JS. Association of maternal endothelial dysfunction with preeclampsia. JAMA. 2001;285(12):1607–12.

    Article  PubMed  CAS  Google Scholar 

  106. Maynard SE, Min J, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. Am J Obstet Gynecol. 1994;171(1):158–64.

    Article  PubMed  CAS  Google Scholar 

  108. Li J, LaMarca B, Reckelhoff JF. A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. AJP Hear Circ Physiol. 2012;303(1):H1–8.

    Article  CAS  Google Scholar 

  109. Bytautiene E, Lu F, Tamayo EH, et al. Long-term maternal cardiovascular function in a mouse model of sFlt-1-induced preeclampsia. Am J Physiol Heart Circ Physiol [Internet]. 2010 [cited 2014 Oct 16];298(1):H189–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19915174

    Article  PubMed  CAS  Google Scholar 

  110. Paauw ND, Joles JA, Spradley FT, et al. Exposure to placental ischemia impairs postpartum maternal renal and cardiac function in rats. Am J Physiol Regul Integr Comp Physiol. 2017;312(5):R664–70.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Brennan L, Morton JS, Quon A, Davidge ST. Postpartum vascular dysfunction in the reduced Uteroplacental perfusion model of preeclampsia. PLoS One. 2016;11(9):e0162487.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pruthi D, Khankin EV, Blanton RM, et al. Exposure to experimental preeclampsia in mice enhances the vascular response to future injury. Hypertension. 2015;65(4):863–70.

    Article  PubMed  CAS  Google Scholar 

  113. Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the american heart association. Circulation [Internet]. 2011 [cited 2014 Oct 16];123(11):1243–62. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3182143&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bushnell C, McCullough LD, Awad IA, et al. Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(5):1545–88.

    Article  PubMed  Google Scholar 

  115. Zoet GA, Koster MPH, Velthuis BK, et al. Determinants of future cardiovascular health in women with a history of preeclampsia. Maturitas [Internet]. 2015;82(2):153–61. Available from: https://doi.org/10.1016/j.maturitas.2015.07.004

    Article  Google Scholar 

  116. Milic NM, Milin-Lazovic J, Weissgerber TL, Trajkovic G, White WM, Garovic VD. Preclinical atherosclerosis at the time of pre-eclamptic pregnancy and up to 10 years postpartum: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;49(1):110–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sabour S, Franx A, Rutten A, et al. High blood pressure in pregnancy and coronary calcification. Hypertens (Dallas, Tex 1979). 2007;49(4):813–7.

    Article  CAS  Google Scholar 

  118. Cassidy-Bushrow AE, Bielak LF, Rule AD, et al. Hypertension during pregnancy is associated with coronary artery calcium independent of renal function. J Womens Health (Larchmt). 2009;18(10):1709–16.

    Article  Google Scholar 

  119. White WM, Mielke MM, Araoz PA, et al. A history of preeclampsia is associated with a risk for coronary artery calcification 3 decades later. Am J Obstet Gynecol [Internet]. 2016;214(4):519.e1–8. Available from: https://doi.org/10.1016/j.ajog.2016.02.003

    Article  Google Scholar 

  120. Paauw ND, Luijken K, Franx A, Verhaar MC, Lely AT. Long-term renal and cardiovascular risk after preeclampsia: towards screening and prevention. Clin Sci. 2016;130(4):239–46.

    Article  CAS  Google Scholar 

  121. Berks D, Hoedjes M, Raat H, Duvekot JJ, Steegers EA, Habbema JD. Risk of cardiovascular disease after pre-eclampsia and the effect of lifestyle interventions: a literature-based study. BJOG [Internet]. 2013 [cited 2014 Oct 16];120(8):924–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23530583

  122. Cusimano MC, Pudwell J, Roddy M, Cho C-KJ, Smith GN. The maternal health clinic: an initiative for cardiovascular risk identification in women with pregnancy-related complications. Am J Obstet Gynecol. 2014;210(5):438.e1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Titia Lely .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paauw, N.D., Lely, A.T. (2018). Cardiovascular Sequels During and After Preeclampsia. In: Kerkhof, P., Miller, V. (eds) Sex-Specific Analysis of Cardiovascular Function. Advances in Experimental Medicine and Biology, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-319-77932-4_28

Download citation

Publish with us

Policies and ethics