Skip to main content

Cellulose-Based Hydrogels in Topical Drug Delivery: A Challenge in Medical Devices

  • Reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Drug delivery is a difficult task in the field of dermal therapeutics mainly in the treatment of burns, ulcers, and wounds. Therefore, fundamental research and the development of novel advanced biomaterials as hydrogels are ongoing to overcome these issues. Currently, several approaches are starting to emerge aiming the stabilization of drug loaded in hydrogel material by increasing the mutual interactions between the polymers, the polymers, and the drug and by covalently cross-linking the polymers during hydrogel formation. Hydrogels provide mechanical support and control over architecture, topography, and biochemical characteristics that make them functionally appropriate to biomedical materials. In this regard, cellulose-based biomaterials can be considered as a gold standard for many topical pharmaceutical applications because of their versatility in fabrication, biodegradability, and biocompatibility. In open wounds, a curative ideal hydrogel is proposed for occlusion and maintenance of the moist environment. Healing through the wet medium has comparative advantages such as preventing dehydration of tissue leading to cell death, stimulating epithelization and formation of granulation tissue, facilitating the removal of necrotic tissue and fibrin, serving as a protective barrier against microorganism, and avoiding excessive fluid loss and can still take drugs. On the other hand, another recent challenge is the use of hydrogel in the manufacture of microneedles. The microneedles are able to, with little force, penetrate effectively in the tissues, maintaining the continuous contact, without causing damages in the tissue, providing a high force of adhesion. These devices may be an alternative to the infection-resistant staples used in surgeries to attach skin grafts to patients with severe wounds resulting from burns and to be used in drug release. In this chapter, we discuss recent developments in cellulose-based hydrogels with respect to drug delivery and current applications in the new devices and research settings for infections, inflammations, skin burns, and wound treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65:104–120

    Article  CAS  PubMed  Google Scholar 

  2. Pang C, Ibrahim A, Bulstrode NW, Ferretti P (2017) An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. Int Wound J 14:450–459

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gantwerker EA, Hom DB (2011) Skin: histology and physiology of wound healing. Facial Plast Surg Clin North Am 19:441–453

    Article  PubMed  Google Scholar 

  4. Doughty DB, Sparks B (2015) Wound-healing physiology and factors that affect the repair process. In: Bryant R, Nix D (eds) Acute and chronic wounds. Elsevier Health Sciences, St. Louis, pp 62–85

    Google Scholar 

  5. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3:445–464

    Article  Google Scholar 

  6. Haury B, Rodeheaver G, Vensko J, Edgerton MT, Edlich RF (1978) Debridement: an essential component of traumatic wound care. Am J Surg 135:238–242

    Article  CAS  PubMed  Google Scholar 

  7. Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing – a review. J Pharm Sci 104:3653–3680

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy JF, Knill CJ, Thorley M (2001) Natural polymers for healing wounds. In: Kennedy JF, Phillips GO, Williams PA (eds) Recent advances in environmentally compatible polymers. Woodhead Publishing, Elsevier, St. Louis, pp 97–104

    Chapter  Google Scholar 

  9. Mahmoudi N, Eslahi N, Mehdipour A, Mohammadi M, Akbari M, Samadikuchaksaraei A, Simchi A (2017) Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. J Mater Sci Mater Med 28:73–86

    Article  CAS  PubMed  Google Scholar 

  10. Mele E (2016) Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J Mater Chem B 4:4801–4812

    Article  CAS  PubMed  Google Scholar 

  11. Tummalapalli M, Berthet M, Verrier B, Deopura B, Alam M, Gupta B (2016) Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. Int J Biol Macromol 82:104–113

    Article  CAS  PubMed  Google Scholar 

  12. Dyson M, Young S, Pendle CL, Webster DF, Lang SM (1988) Comparison of the effects of moist and dry conditions on dermal repair. J Invest Dermatol 91:434–439

    Article  CAS  PubMed  Google Scholar 

  13. Helfman T, Ovington L, Falanga V (1994) Occlusive dressings and wound healing. Clin Dermatol 12:121–127

    Article  CAS  PubMed  Google Scholar 

  14. Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16

    Article  CAS  PubMed  Google Scholar 

  15. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579

    Article  CAS  PubMed  Google Scholar 

  16. Ribeiro AM, Figueiras A, Freire C, Santos D, Veiga F (2010) Combining strategies to optimize a gel formulation containing miconazole: the influence of modified cyclodextrin on textural properties and drug release. Drug Dev Ind Pharm 36:705–714

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, Concheiro A, Torres-Labandeira JJ (2006) New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability. Pharm Res 23:121–130

    Article  CAS  PubMed  Google Scholar 

  18. Kanjickal D, Lopina S, Evancho Chapman MM, Schmidt S, Donovan D (2005) Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins. J Biomed Mater Res A 74:454–460

    Article  CAS  PubMed  Google Scholar 

  19. Kundu B, Kundu SC (2012) Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 33:7456–7467

    Article  CAS  PubMed  Google Scholar 

  20. Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL (2010) Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 1:109–131

    Article  CAS  PubMed  Google Scholar 

  21. Kashyap N, Kumar N, Kumar MR (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22:107–149

    Article  CAS  PubMed  Google Scholar 

  22. Liu W, Teng L, Yu K, Sun X, Fan C, Long C, Liu N, Li S, Wu B, Xu Q (2017) Design of hydrogels of 5-hydroxymethyl tolterodine and their studies on pharmacokinetics, pharmacodynamics and transdermal mechanism. Eur J Pharm Sci 96:530–541

    Article  CAS  PubMed  Google Scholar 

  23. Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D (2016) Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery. In: Majee SB (ed) Emerging concepts in analysis and applications of hydrogels. InTech, Rijeka, pp 159–200

    Google Scholar 

  24. Kong BJ, Kim A, Park SN (2016) Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr Polym 147:473–481

    Article  CAS  PubMed  Google Scholar 

  25. Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS (2016) Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol 85:327–334

    Article  CAS  PubMed  Google Scholar 

  26. Barbosa MA (2013) Soft tissue response. In: Black J, Hastings G (eds) Handbook of biomaterial properties. Springer Science & Business Media, New York, p 571

    Google Scholar 

  27. Schuurman W, Levett PA, Pot MW, Van Weeren PR, Dhert WJ, Hutmacher DW, Melchels FP, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13:551–561

    Article  CAS  PubMed  Google Scholar 

  28. Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101:821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu MS, Maan ZN, Wu J-C, Rennert RC, Hong WX, Lai TS, Cheung AT, Walmsley GG, Chung MT, Mcardle A (2014) Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 42:1494–1507

    Article  PubMed  PubMed Central  Google Scholar 

  30. GhobriL C, Grinstaff M (2015) The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 44:1820–1835

    Article  CAS  PubMed  Google Scholar 

  31. Kamoun EA, Chen X, Eldin MSM, Kenawy E-RS (2015) Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8:1–14

    Article  CAS  Google Scholar 

  32. Ribeiro A, Veiga F, Santos D, Torres-Labandeira JJ, Concheiro A, Alvarez-Lorenzo C (2011) Receptor-based biomimetic NVP/DMA contact lenses for loading/eluting carbonic anhydrase inhibitors. J Membr Sci 383:60–69

    Article  CAS  Google Scholar 

  33. Wu W, Cheng R, Das Neves J, Tang J, Xiao J, Ni Q, Liu X, Pan G, Li D, Cui W (2017) Advances in biomaterials for preventing tissue adhesion. J Control Release 261:318–336

    Article  CAS  PubMed  Google Scholar 

  34. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  35. Mahato R (2017) Microneedles in drug delivery. In: Mitra A, Cholkar K, Mandal A (eds) Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Elsevier, St. Louis, pp 331–353

    Google Scholar 

  36. Garland MJ, Migalska K, Mahmood TMT, Singh TRR, Woolfson AD, Donnelly RF (2011) Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev Med Devices 8:459–482

    Article  CAS  PubMed  Google Scholar 

  37. Kalluri H, Choi SO, Guo XD, Lee JW, Norman J, Prausnitz MR (2017) Evaluation of microneedles in human subjects. In: Dragicevic N, Maibach HI (eds) Percutaneous penetration enhancers physical methods in penetration enhancement. Springer, Berlin, pp 325–340

    Chapter  Google Scholar 

  38. Gill HS, Prausnitz MR (2007) Coating formulations for microneedles. Pharm Res 24:1369–1380

    Article  CAS  PubMed  Google Scholar 

  39. Vemulapalli V, Yang Y, Friden PM, Banga AK (2008) Synergistic effect of iontophoresis and soluble microneedles for transdermal delivery of methotrexate. J Pharm Pharmacol 60:27–33

    Article  CAS  PubMed  Google Scholar 

  40. Pramanick B, Martinez-Chapa SO, Madou MJ (2016) Fabrication of biocompatible hollow microneedles using the C-MEMS process for transdermal drug delivery. ECS Trans 72:45–50

    Article  CAS  Google Scholar 

  41. Sivaraman A, Banga AK (2017) Novel in situ forming hydrogel microneedles for transdermal drug delivery. Drug Deliv Transl Res 7:16–26

    Article  CAS  PubMed  Google Scholar 

  42. Hardy JG, Larrañeta E, Donnelly RF, Mcgoldrick N, Migalska K, Mccrudden MT, Irwin NJ, Donnelly L, Mccoy CP (2016) Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol Pharm 13:907–914

    Article  CAS  PubMed  Google Scholar 

  43. Demir YK, Metin AÜ, Şatıroğlu B, Solmaz ME, Kayser V, Mäder K (2017) Poly (methyl vinyl ether-co-maleic acid)–Pectin based hydrogel-forming systems: gel, film, and microneedles. Eur J Pharm Biopharm 117:182–194

    Article  CAS  PubMed  Google Scholar 

  44. Khavkin J, Ellis DA (2011) Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am 19:229–234

    Article  PubMed  Google Scholar 

  45. Montagna W (2012) The epidermis. The structure and function of skin. Elsevier, Academic, New York, pp 18–74

    Google Scholar 

  46. Nestle FO, Di Meglio P, Qin J-Z, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mcglone F, Reilly D (2010) The cutaneous sensory system. Neurosci Biobehav Rev 34:148–159

    Article  PubMed  Google Scholar 

  48. Holick MF, Chen TC, Lu Z, Sauter E (2007) Vitamin d and skin physiology: a D-lightful story. J Bone Miner Res 22:28–33

    Article  Google Scholar 

  49. Zaidi Z, Lanigan SW (2010) Skin: structure and function. Dermatology in clinical practice. Springer, New York, pp 1–14

    Book  Google Scholar 

  50. Agache P, Humbert P (2004) Measuring the skin. Skin and structural: physiology and metrology. Springer, New York, pp 17–399

    Book  Google Scholar 

  51. Madison KC (2003) Barrier function of the skin: “la raison d’etre” of the epidermis. J Invest Dermatol 121:231–241

    Article  CAS  PubMed  Google Scholar 

  52. Breitkreutz D, Koxholt I, Thiemann K, Nischt R (2013) Skin basement membrane: the foundation of epidermal integrity – BM functions and diverse roles of bridging molecules nidogen and perlecan. Biomed Res Int 2013:179784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Blanpain C (2010) Stem cells: skin regeneration and repair. Nature 464:686–687

    Article  CAS  PubMed  Google Scholar 

  54. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  55. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542

    Article  CAS  PubMed  Google Scholar 

  56. Simmons BP (1982) Guideline for prevention of surgical wound infections. Infect Control Hosp Epidemiol 3:188–196

    Article  CAS  Google Scholar 

  57. Martin Y, Lali F, Metcalfe A (2016) Modelling wound healing. In: Ågren M (ed) Wound healing biomaterials-volume 1: therapies and regeneration. Elsevier, St. Louis, pp 151–173

    Chapter  Google Scholar 

  58. Alvarez OM, Kalinski C, Nusbaum J, Hernandez L, Pappous E, Kyriannis C, Parker R, Chrzanowski G, Comfort CP (2007) Incorporating wound healing strategies to improve palliation (symptom management) in patients with chronic wounds. J Palliat Med 10: 1161–1189

    Article  PubMed  Google Scholar 

  59. Harding K, Morris H, Patel G (2002) Science, medicine, and the future: healing chronic wounds. BMJ 324:160–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. James GA, Swogger E, Wolcott R, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44

    Article  PubMed  Google Scholar 

  61. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366:1736–1743

    Article  PubMed  Google Scholar 

  62. Dissemond J (2017) Chronic leg ulcers. Der Hautarzt. Zeitschrift Dermatol Venerologie verwandte Gebiete 68:614–620

    Article  CAS  Google Scholar 

  63. Nguyen T, Prudhomme K, Yamamoto R, Lowe AG, Green AM (2017) Methods and compositions for wound treatment. US Patent No. 8709393 B2

    Google Scholar 

  64. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellul 4:173–207

    Article  Google Scholar 

  65. Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol J-F (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306

    Article  CAS  Google Scholar 

  66. Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellul 16:999–1015

    Article  CAS  Google Scholar 

  67. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  68. Park S, Venditti RA, Jameel H, Pawlak JJ (2007) Studies of the heat of vaporization of water associated with cellulose fibers characterized by thermal analysis. Cellul 14:195–204

    Article  CAS  Google Scholar 

  69. Kafy A, Sadasivuni KK, Kim H-C, Akther A, Kim J (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17:5923–5931

    Article  CAS  PubMed  Google Scholar 

  70. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438

    Article  CAS  PubMed  Google Scholar 

  71. Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellul 20:2191–2219

    Article  CAS  Google Scholar 

  72. Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    Article  CAS  PubMed  Google Scholar 

  73. Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33:1547–1571

    Article  CAS  PubMed  Google Scholar 

  74. Hon DN-S (1996) Cellulose and its derivatives: structures, reactions, and medical uses. In: Dumitriu S (ed) Polysaccharides in medicinal applications. Marcel Dekker, New York, pp 87–105

    Google Scholar 

  75. Heinze T (2015) Cellulose: structure and properties. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Berlin, pp 1–52

    Google Scholar 

  76. Ramos LDA, Frollini E, Heinze T (2005) Carboxymethylation of cellulose in the new solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Carbohydr Polym 60:259–267

    Article  CAS  Google Scholar 

  77. Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135

    Article  CAS  PubMed  Google Scholar 

  78. El-sakhawy M, Kamel S, Salama A, Sarhan H-A (2014) Carboxymethyl cellulose acetate butyrate: a review of the preparations, properties, and applications. J Drug Deliv 2014:575969

    Article  PubMed  PubMed Central  Google Scholar 

  79. Babu VR, Kanth VR, Mukund JM, Aminabhavi TM (2010) Novel methyl cellulose-grafted-acrylamide/gelatin microspheres for controlled release of nifedipine. J Appl Polym Sci 115:3542–3549

    Article  CAS  Google Scholar 

  80. Lin C-P, Boehnke M (1999) Influences of methylcellulose on corneal epithelial wound healing. J Ocul Pharmacol Ther 15:59–63

    Article  CAS  PubMed  Google Scholar 

  81. Iqbal HM, Kyazze G, Locke IC, Tron T, Keshavarz T (2015) Poly (3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application. Int J Biol Macromol 81:552–559

    Article  CAS  PubMed  Google Scholar 

  82. Jedvert K, Heinze T (2017) Cellulose modification and shaping–a review. J Polym Eng 37:845–860

    Article  CAS  Google Scholar 

  83. Marcos X, Pérez-Casas S, Llovo J, Concheiro A, Alvarez-Lorenzo C (2016) Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin. Int J Pharm 500:11–19

    Article  CAS  PubMed  Google Scholar 

  84. Pekel N, Yoshii F, Kume T, Güven O (2004) Radiation crosslinking of biodegradable hydroxypropylmethylcellulose. Carbohydr Polym 55:139–147

    Article  CAS  Google Scholar 

  85. Agubata CO, Okereke C, Nzekwe IT, Onoja RI, Obitte NC (2016) Development and evaluation of wound healing hydrogels based on a quinolone, hydroxypropyl methylcellulose and biodegradable microfibres. Eur J Pharm Sci 89:1–10

    Article  CAS  PubMed  Google Scholar 

  86. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  PubMed  Google Scholar 

  87. Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46

    Article  CAS  Google Scholar 

  88. Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellul 23:247–258

    Article  CAS  Google Scholar 

  89. Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 2. Acidic solvents. Carbohydr Polym 151:707–715

    Article  CAS  PubMed  Google Scholar 

  90. Ghasemi M, Tsianou M, Alexandridis P (2017) Assessment of solvents for cellulose dissolution. Bioresour Technol 228:330–338

    Article  CAS  PubMed  Google Scholar 

  91. Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75

    Article  Google Scholar 

  92. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  93. Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Escobar J, García D, Zaldivar D, Katime I (2002) Hidrogeles. Principales características en el diseño de sistemas de liberación controlada de fármacos. Rev Iberoam 3:1–25

    Google Scholar 

  95. Maitra J, Shukla VK (2014) Cross-linking in hydrogels-a review. Am J Polym Sci 4:25–31

    CAS  Google Scholar 

  96. Wang Y, Wang Z, Wu K, Wu J, Meng G, Liu Z, Guo X (2017) Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr Polym 168:112–120

    Article  CAS  PubMed  Google Scholar 

  97. Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel−sol transitions for concentrated microcrystalline cellulose (MCC)/1-Ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12:1087–1096

    Article  CAS  PubMed  Google Scholar 

  98. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels … a review. Saudi Pharm J 24:554–559

    Article  PubMed  Google Scholar 

  99. Vasquez JMG, Tumolva TP (2015) Synthesis and characterization of a self-assembling hydrogel from water-soluble cellulose derivatives and sodium hydroxide/thiourea solution. Am J Chem 5:60–65

    CAS  Google Scholar 

  100. Jensen BE, Dávila I, Zelikin AN (2016) Poly (vinyl alcohol) physical hydrogels: matrix-mediated drug delivery using spontaneously eroding substrate. J Phys Chem B 120: 5916–5926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lopez-Sanchez P, Wang D, Zhang Z, Flanagan B, Gidley MJ (2016) Microstructure and mechanical properties of arabinoxylan and (1, 3; 1, 4)-β-glucan gels produced by cryo-gelation. Carbohydr Polym 151:862–870

    Article  CAS  PubMed  Google Scholar 

  102. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  CAS  PubMed Central  Google Scholar 

  103. Stoyneva V, Momekova D, Kostova B, Petrov P (2014) Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830

    Article  CAS  PubMed  Google Scholar 

  104. Yue Z, Wen F, Gao S, Ang MY, Pallathadka PK, Liu L, Yu H (2010) Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials 31:8141–8152

    Article  CAS  PubMed  Google Scholar 

  105. Chang C, He M, Zhou J, Zhang L (2011) Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels. Macromolecules 44:1642–1648

    Article  CAS  Google Scholar 

  106. Barros SC, Da Silva AA, Costa DB, Costa CM, Lanceros-Méndez S, Maciavello MT, Ribelles JG, Sentanin F, Pawlicka A, Silva MM (2015) Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films. Cellul 22:1911–1929

    Article  CAS  Google Scholar 

  107. Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 64:154–162

    Article  Google Scholar 

  108. Masrat R, Maswal M, Chat OA, Rather GM, Dar AA (2016) A rheological investigation of sol–gel transition of hydroxypropyl cellulose with nonionic surfactant sorbitan monopalmitate: modulation of gel strength by UV irradiation. Colloids Surf A Physicochem Eng Asp 489:113–121

    Article  CAS  Google Scholar 

  109. Moreira R, Chenlo F, Silva C, Torres MD (2017) Rheological behaviour of aqueous methylcellulose systems: effect of concentration, temperature and presence of tragacanth. LWT-Food Sci Technol 84:764–770

    Article  CAS  Google Scholar 

  110. Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–4985

    Article  CAS  PubMed  Google Scholar 

  111. Onofrei M-D, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications, and educational aspects. Formatex Research Center, Badajoz, pp 108–120

    Google Scholar 

  112. Fathi M, Barar J, Aghanejad A, Omidi Y (2015) Hydrogels for ocular drug delivery and tissue engineering. Bioimpacts 5:159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu L, Gao Q, Lu X, Zhou H (2016) In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharmacol 11:673–683

    Google Scholar 

  114. Hoarea TR, Kohaneb DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  115. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  116. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  117. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  PubMed  Google Scholar 

  118. Peppas NA (1997) Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 2:531–537

    Article  CAS  Google Scholar 

  119. El-Hag, Abd El-Rehim H, Kamal H, Hegazi D (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as specific delivery system. J Macromol Sci Pure Appl Chem 45:628–634

    Article  CAS  Google Scholar 

  120. Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle GF, Vignes-Colombeix C, Chadjichristos C, Galera P, Daculsi G, Guicheux J (2005) A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials 26:6643–6651

    Article  CAS  PubMed  Google Scholar 

  121. Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80:66–74

    Article  CAS  PubMed  Google Scholar 

  122. Zaki NM, Awad GA, Mortada ND, Abd ElHady SS (2007) Enhanced bioavailability of metoclopramide HCl by intranasal administration of mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci 32:296–307

    Article  CAS  PubMed  Google Scholar 

  123. Kapoor D, Vyas RB, Lad C, Patel M, Lal B (2015) Site specific drug delivery through nasal route using bioadhesive polymers. J Drug Deliv Ther 5:1–9

    Google Scholar 

  124. Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Percoraro ER, Rodeheaver G, Robson MC (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol 130:489–493

    Article  CAS  PubMed  Google Scholar 

  125. Moore K, McCallion R, Searle RJ, Stacey MC, Harding KG (2006) Prediction and monitoring the therapeutic response of chronic dermal wounds. Int Wound J 3:89–96

    Article  PubMed  PubMed Central  Google Scholar 

  126. Medaghiele M, Demitri C, Sannino A, Ambrosio L (2014) Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns and Trauma 2:153–161

    Article  Google Scholar 

  127. Dai T, Huang Y-Y, Sharma SK, Hashmi JT, Kurup DB, Hamblin MR (2010) Topical antimicrobials for burn wound infections. Recent Pat Antiinfect Drug Discov 5:124–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Monier M, Abdel-Latif DA, Ji HF (2016) Synthesis and application of photo-active carboxymethyl cellulose derivatives. React Funct Polym 102:137–146

    Article  CAS  Google Scholar 

  129. Ng SF, Jumaat N (2014) Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. Eur J Pharm Sci 51:173–179

    Article  CAS  PubMed  Google Scholar 

  130. Furst T, Piette M, Lechanteur A, Evrard B, Piel G (2015) Mucoadhesive cellulosic derivative sponges as drug delivery system for vaginal application. Eur J Pharm Biopharm 95:128–135

    Article  CAS  PubMed  Google Scholar 

  131. Lin Q, Zheng Y, Ren L, Wu J, Wang H, An J, Fan W (2014) Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with crosslinking semi-interpenetrating network. J Appl Polym Sci 131:3948–3957

    Article  CAS  Google Scholar 

  132. Sood S, Gupta VK, Agarwal S, Dev K, Pathania D (2017) Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly (lactic acid-co-itaconic acid) hydrogel. Int J Biol Macromol 101:612–620

    Article  CAS  PubMed  Google Scholar 

  133. Oliveira RN, Moreira APD, Thiré RMSM, Quilty B, Passos TM, Simon P, Mancini MC, McGuinness GB (2017) Absorbent polyvinyl alcohol–sodium carboxymethyl cellulose hydrogels for propolis delivery in wound healing applications. Polym Eng Sci 57:1224–1233

    CAS  Google Scholar 

  134. Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12:e0172727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM (2017) A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment. ACS Appl Mater Interfaces 9:15307–15316

    Article  CAS  PubMed  Google Scholar 

  136. Huang B, Liu M, Zhou C (2017) Cellulose–halloysite nanotube composite hydrogels for curcumin delivery. Cellul 24:2861–2875

    Article  CAS  Google Scholar 

  137. Sun N, Wang T, Yan X (2017) Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: formation, in vitro release and bacteriostasis application. Carbohydr Polym 172:49–59

    Article  CAS  PubMed  Google Scholar 

  138. Bang S, Ko YG, Kim WI, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol S0141-8130:31292–31298

    Google Scholar 

  139. Jeong D, Kim HK, Jeong J-P, Dindulkar SD, Cho E, Yang Y-H, Jung S (2016) Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin, a hydrophobic antibacterial drug. Cellul 23:2609–2625

    Article  CAS  Google Scholar 

  140. Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9:119–136

    Article  CAS  PubMed Central  Google Scholar 

  141. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications. A review. J Adv Res 6:105–121

    Article  CAS  PubMed  Google Scholar 

  142. Fernandes EM (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441

    Article  CAS  Google Scholar 

  143. Pillai AB, Nair JV, Gupta NK, Gupta S (2015) Microemulsion-loaded hydrogel formulation of butenafine hydrochloride for improved topical delivery. Arch Dermatol Res 307:625–633

    Article  CAS  PubMed  Google Scholar 

  144. Sabale V, Vora S (2012) Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int J Pharm Invest 2:140–149

    Article  CAS  Google Scholar 

  145. Jantharaprapap R, Stagni G (2007) Effects of penetration enhancers on in vitro permeability of meloxicam gels. Int J Pharm 343:26–33

    Article  CAS  PubMed  Google Scholar 

  146. Hosny KM, Tayeb MM, Fallatah OM, Mahmoud AA, Mandoura MS, Al-Sawahli MM (2013) Preparation and evaluation of ketorolac tromethamine hydrogel. Int J Pharm Sci Rev Res 20:269–274

    CAS  Google Scholar 

  147. Kouchak M, Handali S (2014) Effects of various penetration enhancers on penetration of aminophylline through shed snake skin. Jundishapur J Nat Pharm Prod 9:24–29

    Article  PubMed  PubMed Central  Google Scholar 

  148. Arunkumar S, Shivakumar HN, Desai BG, Ashok P (2016) Effect of gel properties on transdermal iontophoretic delivery of diclofenac sodium. e-Polymers 16:25–32

    Article  CAS  Google Scholar 

  149. Gupta A, Mishra AK, Singh AK, Gupta V, Bansal P (2010) Formulation and evaluation of topical gel of diclofenac sodium using different polymers. Drug Invent Today 2:250–253

    CAS  Google Scholar 

  150. Prakash PR, Rao NGR, Soujanya C (2010) Formulation, evaluation and anti-inflammatory activity of topical etoricoxib gel. Asian J Pharm Clin Res 3:126–129

    CAS  Google Scholar 

  151. Abdel-Mottaleb MMA, Mortada ND, Elshamy AA, Awad GAS (2007) Preparation and evaluation of fluconazole gels. Egypt J Biomed Sci 23:35–41

    Google Scholar 

  152. Sawant PD, Luu D, Ye R, Buchta R (2010) Drug release from hydroethanolic gels. Effect of drug’s lipophilicity (log P), polymer-drug interactions and solvent lipophilicity. Int J Pharm 396:45–52

    Article  CAS  PubMed  Google Scholar 

  153. Cho CW, Choi JS, Shin SC (2011) Enhanced local anesthetic action of mepivacaine from the bioadhesive gels. Pak J Pharm Sci 24:87–93

    CAS  PubMed  Google Scholar 

  154. Huang YC, Huang KY, Yang BY, Ko CH, Huang HM (2016) Fabrication of novel hydrogel with berberine-enriched carboxymethylcellulose and hyaluronic acid as an anti-inflammatory barrier membrane. Biomed Res Int 2016:3640182

    PubMed  PubMed Central  Google Scholar 

  155. Vlaia L, Olariu I, Coneac G, Vlaia V, Popoiu C, Stănciulescu C, Muţ AM, Szabadai Z, Lupuleasa D (2014) Percutaneous penetration enhancement of propranolol hydrochloride from HPMC-based hydroethanolic gels containing terpenes. Farmacia 62:991–1008

    CAS  Google Scholar 

  156. Guyot M, Fawaz F (2000) Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol. Int J Pharm 204:171–182

    Article  CAS  PubMed  Google Scholar 

  157. Donnelly RF, Raj Singh TR, Woolfson AD (2010) Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 17:187–207

    Article  CAS  PubMed  Google Scholar 

  158. Nayak A, Das DB, Vladisavljević GT (2014) Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel. Pharm Res 31:1170–1184

    Article  CAS  PubMed  Google Scholar 

  159. Caffarel-Salvador E, Brady AJ, Eltayib E, Meng T, Alonso-Vicente A, Gonzalez-Vazquez P, Torrisi BM, Vicente-Perez EM, Mooney K, Jones DS, Bell SE, McCoy CP, McCarthy HO, McElnay JC, Donnelly RF (2015) Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS One 10:e0145644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work received financial support from National Funds (FCT/MEC, Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência) through project UID/QUI/50006/2013, co-financed by European Union (FEDER under the Partnership Agreement PT2020). This work was supported by the grant FCT PTDC/CTM-BIO/1518/2014 from the Portuguese Foundation for Science and Technology (FCT) and the European Community Fund (FEDER) through the COMPETE2020 program. The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT), Portuguese Agency for Scientific Research, for financial support through the Research Project n. ° IN0689, POCI-01-0145-FEDER-016642. The authors would like to thank CNPq (praxis 152309-2016/0) for the financial support and would like to thank Ivan Antonio Neumann for helping to draw the figure.

Conflicts of Interest

Authors have no any proprietary or financial interest in the products or approaches discussed. Authors report no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Figueiras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ribeiro, A.M., Magalhães, M., Veiga, F., Figueiras, A. (2019). Cellulose-Based Hydrogels in Topical Drug Delivery: A Challenge in Medical Devices. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_41

Download citation

Publish with us

Policies and ethics