Skip to main content

Musical Organisms

A Generative Approach to Growing Musical Scores

  • Conference paper
  • First Online:
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2018)

Abstract

In this paper, we describe the creation of Musical Organisms using a novel generative music composition approach modeled on biological evolutionary and developmental (Evo Devo) processes. We are interested in using the Evo Devo processes that generate biological organisms with diverse and interesting structures—structures that exhibit modularity, repetition, and hierarchy—in order to create diverse music compositions that exhibit these same structural properties. The current focus of our work has been on Musical Organism development. Our Musical Organisms are musical scores that develop from a single musical note, just as a biological organism develops from a single cell. We describe the musical genome and the non-linear dynamical processes that drive the development of the Musical Organism from single note to complex musical score. While the evolution of Musical Organisms has not been our central focus, we describe how evolution can act upon genomic variation within populations of Musical Organisms to create new Musical Organism species with diverse and complex structures. And we introduce the concept of genome embedding as a unique method for generating genetic variation in a population, and developing structural modularity in Musical Organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindemann, A., Lindemann, E.: Evo Devo Music. http://annalindemann.com/evo-devo-music/

  2. Lindemann, A., Lindemann, E.: Rhythm zoo: music composition modeled on genetic networks. In: Proceedings of the 21st International Symposium on Electronic Art., Vancouver, Canada (2015)

    Google Scholar 

  3. Maienschein, J., Laubichler, M.D.: From Embryology to Evo-Devo: A History of Developmental Evolution. The MIT Press, Cambridge (2007)

    Google Scholar 

  4. Darwin, C.: On the Origin of Species. Penguin Classics, London (1859)

    Google Scholar 

  5. Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M.C., Tassani, S., Piva, F., Perez-Amodio, S., Strippoli, P., Canaider, S.: An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013)

    Article  Google Scholar 

  6. Xiong, F., Megason, S.: Movie: zebrafish embryonic development at single cell resolution. https://youtu.be/RQ6vkDr_Dec

  7. Biles, J.: GenJam: a genetic algorithm for generating jazz solos. In: Proceedings of the 19th International Computer Music Conference, pp. 131–137 (1994)

    Google Scholar 

  8. Stoll, T.M.: Genomic: evolving sound treatments using genetic algorithms. In: Romero, J., McDermott, J., Correia, J. (eds.) EvoMUSART 2014. LNCS, vol. 8601, pp. 107–118. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44335-4_10

    Google Scholar 

  9. Moroni, A., Manzolli, J., von Zuben, F., Gudwin, R.: Vox populi: an interactive evolutionary system for algorithmic music composition. Leonardo Music J. 10, 49–54 (2000)

    Article  Google Scholar 

  10. MacCallum, R.M., Mauch, M., Burt, A., Leroi, A.M.: Evolution of music by public choice. Proc. Natl. Acad. Sci. 109, 12081–12086 (2012)

    Article  Google Scholar 

  11. Degazio, B.: The evolution of musical organisms. Leonardo Music J. 7, 27–33 (1997)

    Article  Google Scholar 

  12. Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 205–213. MIT Press (1997)

    Google Scholar 

  13. Bentley, P., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Genetic and Evolutionary Computation Conference GECCO 1999, pp. 35–43 (1999)

    Google Scholar 

  14. McCormack, J.: A developmental model for generative media. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 88–97. Springer, Heidelberg (2005). https://doi.org/10.1007/11553090_10

    Chapter  Google Scholar 

  15. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program Evolvable Mach. 8, 131–162 (2007)

    Article  Google Scholar 

  16. Clune, J., Lipson, H.: Evolving 3D objects with a generative encoding inspired by developmental biology. ASM SIGEVOlution 5, 2–12 (2011)

    Article  Google Scholar 

  17. Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 167–174. ACM, New York (2013)

    Google Scholar 

  18. Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B 280, 20122863 (2013)

    Article  Google Scholar 

  19. Carroll, S.B., Grenier, J.K., Weatherbee, S.D.: From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell, Malden (2004)

    Google Scholar 

  20. Monteiro, A.: Gene regulatory networks reused to build novel traits. BioEssays 34, 181–186 (2012)

    Article  Google Scholar 

  21. Margulis, L.: Origin of Eukaryotic Cells. Yale University Press, New Haven (1970)

    Google Scholar 

  22. Ryan, F.: Virolution. Collins, London (2009)

    Google Scholar 

  23. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  24. Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.L., Postlethwait, J.: Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lindemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lindemann, A., Lindemann, E. (2018). Musical Organisms. In: Liapis, A., Romero Cardalda, J., Ekárt, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2018. Lecture Notes in Computer Science(), vol 10783. Springer, Cham. https://doi.org/10.1007/978-3-319-77583-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77583-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77582-1

  • Online ISBN: 978-3-319-77583-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics