Skip to main content

Many-Objective Optimization of Mission and Hybrid Electric Power System of an Unmanned Aircraft

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

This work aims at comparing different many-objective techniques for the optimization of mission and parallel hybrid electric power system for aircraft. In particular, this work considers, as input of the optimization, the specification of the flight mission, the size of the main components and the energy management strategy for a Medium Altitude Long Endurance Unmanned Aerial Vehicle (MALE-UAV). The goals of the optimization are maximization of electric endurance, minimization of overall fuel consumption, improvement of take-off performance and minimization of the additional volume of the hybrid electric solution with respect to the initial conventional power system. The optimization methods considered in this study are those included in the ModeFRONTIER optimization environment: NSGA-II, MOGA-II, MOSA (Multi Objective Simulated Annealing algorithm) and Evolutionary Strategy of type (µ/ρ + λ)-ES. Initially, appropriate metrics are used to compare the proposed methods in a simplified problem with only two objective functions. Then a complete optimization is performed, in order to underline the degradation of the proposed optimization methods as the size of the problem increases and to define the best method according to the number of objective functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pornet, C., Isikveren, A.T.: Conceptual design of hybrid-electric transport aircraft. Prog. Aerosp. Sci. 79, 114–135 (2015)

    Article  Google Scholar 

  2. Gimelli, A., Muccillo, M., Sannino, R.: Multivariable and multiobjective optimization for cogeneration plants. Part A: methodology. In: La Termotecnica, pp. 55–58 (2015)

    Google Scholar 

  3. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1), Article No. 13 (2015)

    Google Scholar 

  4. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-objective optimization: an engineering design perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_2

    Chapter  Google Scholar 

  5. Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 373–404. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3_14

    Chapter  Google Scholar 

  6. Ishibuchi, H., Tsukamato, N., Nojima, Y.: Evolutionary many objective optimization: a short review. In: Proceedings of 2008 IEEE Congress on Evolutionary Computation, Hong Kong, 1–6 June 2008, pp. 2424–2431 (2008)

    Google Scholar 

  7. ModeFRONTIER 2014, Update 1, Version Number 4.6.1 b20150227, User Manual (2014)

    Google Scholar 

  8. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies a comprehensive introduction. Nat. Comput. 1, 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kirkpatrick, S., Gelatt Jr., D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  10. Donateo, T., Ficarella, A., Spedicato, L.: Development and validation of a software tool for complex aircraft powertrains. Adv. Eng. Softw. 96, 1–13 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.001

    Article  Google Scholar 

  11. Lam, L.L., Darling, R.B.: Determining the optimal discharge strategy for a lithium-ion battery using a physics-based model. J. Power Sources 276, 195–202 (2015)

    Article  Google Scholar 

  12. Donateo, T., Ficarella, A.: Designing a hybrid electric powertrain for an unmanned aircraft with a commercial optimization software. SAE Int. J. Aerosp. 10, 1–12 (2017)

    Article  Google Scholar 

  13. Riquelme, N., Lücken, C.V., Baran, B.: Performance metrics in multi-objective optimization. In: Computing Conference (CLEI), Latin American (2015)

    Google Scholar 

  14. Donateo, T., De Risi, A., Laforgia, D.: Choosing an evolutionary algorithm to optimize diesel engines. In: TCN CAE 2005, University of Lecce, Department of Engineering for Innovation, Lecce, Italy (2011)

    Google Scholar 

  15. Lee, S., von Allmen, P., Fink, W., Petropoulos, A.E., Terrile, R.J.: Comparison of multi-objective genetic algorithms in optimizing Q-law low-thrust orbit transfers. In: GECCO 2005, 25–29 June 2005, Washington, DC, USA (2005)

    Google Scholar 

  16. Rigoni, E., Poles, S.: NBI and MOGA-II, two complementary algorithms for multi-objective optimizations. In: 04461 - Practical Approaches to Multi-Objective Optimization (2005)

    Google Scholar 

  17. Rigoni, E.: MOSA Multi Objective Simulated Annealing. Technical report 2003-003, ESTECO (2003)

    Google Scholar 

  18. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181, 1653–1669 (2007)

    Article  MATH  Google Scholar 

  19. Aksugur, M., Inalhan, G.: Design, build and flight testing of a VTOL tailsitter unmanned aerial vehicle with hybrid propulsion system. In: Ankara International Aerospace Conference, Ankara, Turkey (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Donateo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Donateo, T., De Pascalis, C.L., Ficarella, A. (2018). Many-Objective Optimization of Mission and Hybrid Electric Power System of an Unmanned Aircraft. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics