Skip to main content

Transport Delay and First Order Inertia Time Signal Prediction Dedicated to Teleoperation

  • Conference paper
  • First Online:
Automation 2018 (AUTOMATION 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 743))

Included in the following conference series:

Abstract

In the paper a sensor-less control scheme for a bilateral teleoperation system with a force-feedback based on a prediction of an input of a non-linear inverse model by prediction blocks is presented. The prediction method was designed to minimize the effect of the transport delay and the phase shift of sensors, actuators and mechanical objects. The solution is an alternative to complex non-linear models like artificial neural networks, which requires complex stability analysis and control systems with high computing power. Also, in this paper we had compared a transport delay and first order inertia continues approach. The effectiveness of both approaches has been verified on the hydraulic manipulator test stand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arcara, P., Melchiorri, C., Stramigioli, S.: Intrinsically passive control in bilateral teleoperation mimo systems. In: 2001 European Control Conference (ECC), pp. 1180–1185 (2001)

    Google Scholar 

  2. Atashzar, S.F., Polushin, I.G., Patel, R.V.: Projection-based force reflection algorithms for teleoperated rehabilitation therapy. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 477–482 (2013)

    Google Scholar 

  3. Ben-Dov, D., Salcudean, S.E.: A force-controlled pneumatic actuator for use in teleoperation masters. In: Proceedings of the 1993 IEEE International Conference on Robotics and Automation, vol. 933, pp. 938–943 (1993)

    Google Scholar 

  4. C GR: Remote-control manipulator. Google Patents (1953)

    Google Scholar 

  5. Chang, M.-K.: An adaptive self-organizing fuzzy sliding mode controller for a 2-DoF rehabilitation robot actuated by pneumatic muscle actuators. Control Eng. Pract. 18, 13–22 (2010)

    Article  Google Scholar 

  6. Ferraguti, F., Fantuzzi, C., Secchi, C.: Optimizing the use of power in wave based bilateral teleoperation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1469–1474. IEEE (2016)

    Google Scholar 

  7. Ferrell, W.R.: Delayed force feedback. Hum. Factors J. Hum. Factors Ergon. Soc. 8, 449–455 (1966)

    Article  Google Scholar 

  8. Ferrell, W.R.: Remote manipulation with transmission delay. IEEE Trans. Hum. Factors Electron. HFE 6, 24–32 (1965)

    Article  Google Scholar 

  9. Ferrell, W.R., Sheridan, T.B.: Supervisory control of remote manipulation. IEEE Spectr. 4, 81–88 (1967)

    Article  Google Scholar 

  10. Ge, X., Zheng, Y., Brudnak, M.J., et al.: Analysis of a model-free predictor for delay compensation in networked systems. In: Time Delay Systems, pp. 201–215. Springer, Cham (2017)

    Google Scholar 

  11. Hastrudi-Zaad, K., Salcudean, S.E.: On the use of local force feedback for transparent teleoperation. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 1863, pp. 1863–1869 (1999)

    Google Scholar 

  12. Hulin, T., Albu-Schäffer, A., Hirzinger, G.: Passivity and stability boundaries for haptic systems with time Delay. IEEE Trans. Control Syst. Technol. 22, 1297–1309 (2014)

    Article  Google Scholar 

  13. Hyun Chul, C., Jong Hyeon, P., Kyunghwan, K., et al.: Sliding-mode-based impedance controller for bilateral teleoperation under varying time-delay. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, ICRA, vol. 1021, pp. 1025–1030 (2001)

    Google Scholar 

  14. Kaya, I.: Obtaining controller parameters for a new PI-PD Smith predictor using autotuning. J. Process Control 13, 465–472 (2003)

    Article  Google Scholar 

  15. Khadraoui, S., Rakotondrabe, M., Lutz, P.: Interval modeling and robust control of piezoelectric microactuators. IEEE Trans. Control Syst. Technol. 20, 486–494 (2012)

    Article  MATH  Google Scholar 

  16. Kim, W.S.: Developments of new force reflecting control schemes and an application to a teleoperation training simulator. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, vol. 1412, pp. 1412–1419 (1992)

    Google Scholar 

  17. Kim, W.S., Hannaford, B., Fejczy, A.K.: Force-reflection and shared compliant control in operating telemanipulators with time delay. IEEE Trans. Robot. Autom. 8, 176–185 (1992)

    Article  Google Scholar 

  18. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9, 624–637 (1993)

    Article  Google Scholar 

  19. Lichiardopol, S., Wouw, N.V.D., Nijmeijer, H.: Control scheme for human-robot co-manipulation of uncertain, time-varying loads. In: 2009 American Control Conference, pp. 1485–1490 (2009)

    Google Scholar 

  20. Miądlicki, K., Pajor, M., Sakow, M.: Loader crane working area monitoring system based on LIDAR scanner. In: Advances in Manufacturing, p. 465 (2017)

    Google Scholar 

  21. Miądlicki, K., Pajor, M.: Real-time gesture control of a CNC machine tool with the use Microsoft Kinect sensor. Int. J. Sci. Eng. Res. 6, 538–543 (2015)

    Google Scholar 

  22. Miądlicki, K., Pajor, M., Saków, M.: Ground plane estimation from sparse LIDAR data for loader crane sensor fusion system. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 717–722. IEEE (2017)

    Google Scholar 

  23. Miądlicki, K., Pajor, M., Saków, M.: Real-time ground filtration method for a loader crane environment monitoring system using sparse LIDAR data. In: 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 207–212. IEEE (2017)

    Google Scholar 

  24. Moreau, R., Pham, M.T., Tavakoli, M., et al.: Sliding-mode bilateral teleoperation control design for master–slave pneumatic servo systems. Control Eng. Pract. 20, 584–597 (2012)

    Article  Google Scholar 

  25. Nguyen, T., Leavitt, J., Jabbari, F., et al.: Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves. IEEE/ASME Trans. Mechatron. 12, 216–219 (2007)

    Article  Google Scholar 

  26. Niemeyer, G., Slotine, J.J.E.: Stable adaptive teleoperation. IEEE J. Ocean. Eng. 16, 152–162 (1991)

    Article  Google Scholar 

  27. Pajor, M., Miądlicki, K., Saków, M.: Kinect sensor implementation in fanuc robot manipulation. Arch. Mech. Technol. Autom. 34, 35–44 (2014)

    Google Scholar 

  28. Polushin, I.G., Takhmar, A., Patel, R.V.: Projection-based force-reflection algorithms with frequency separation for bilateral teleoperation. IEEE/ASME Trans. Mechatron. 20, 143–154 (2015)

    Article  Google Scholar 

  29. Rakotondrabe, M., Ivan, I.A., Khadraoui, S., et al.: Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control. IEEE/ASME Trans. Mechatron. 20, 519–531 (2015)

    Article  Google Scholar 

  30. Sakow, M., Parus, A., Pajor, M., et al.: Unilateral hydraulic telemanipulation system for operation in machining work area. In: Advances in Manufacturing, p. 415 (2017)

    Google Scholar 

  31. Saków, M., Miądlicki, K., Parus, A.: Self-sensing teleoperation system based on 1-dof pneumatic manipulator. J. Autom. Mob. Robot. Intell. Syst. 11, 64–76 (2017)

    Google Scholar 

  32. Saków, M., Pajor, M., Parus, A.: Estymacja siły oddziaływania środowiska na układ zdalnie sterowany ze sprzężeniem siłowym zwrotnym o kinematyce kończyny górnej. Modelowanie Inz. 58, 113–122 (2016)

    Google Scholar 

  33. Saków, M., Pajor, M., Parus, A.: Układ sterowania samowyznaczający siły oddziaływania środowiska na manipulator wykonawczy w czasie pracy systemu telemanipulacyjnego. Projektowanie Mechatroniczne - Zagadnienia Wybrane, pp. 139–150. Katedra Robotyki i Mechatroniki, Akademia Górniczo-Hutnicza w Krakowie (2016)

    Google Scholar 

  34. Saków, M., Parus, A.: Sensorless control scheme for teleoperation with force-feedback, based on a hydraulic servo-mechanism, theory and experiment. Measur. Autom. Monit. 62, 417–425 (2016)

    Google Scholar 

  35. Saków, M., Parus, A., Miądlicki, K.: Predykcyjna metoda wyznaczania siły w siłowym sprzężeniu zwrotnym w systemie zdalnie sterowanym. Modelowanie Inż. 31, 88–97 (2017). (in Polish)

    Google Scholar 

  36. Saków, M., Parus, A., Pajor, M., et al.: Nonlinear inverse modeling with signal prediction in bilateral teleoperation with force-feedback. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 141–146. IEEE (2017)

    Google Scholar 

  37. Sheridan, T.B.: Space teleoperation through time delay: review and prognosis. IEEE Trans. Robot. Autom. 9, 592–606 (1993)

    Article  Google Scholar 

  38. Sheridan, T.B., Ferrell, W.R.: Human control of remote computer-manipulators. In: Proceedings of the 1st International Joint Conference on Artificial Intelligence, Washington, DC, pp. 483–494. Morgan Kaufmann Publishers Inc. (1969)

    Google Scholar 

  39. Sheridan, T.B., Verplank, W.L.: Human and computer control of undersea teleoperators. Massachusetts Inst. of Tech. Cambridge Man-Machine Systems Lab. (1978)

    Google Scholar 

  40. Stuart, K.D., Majewski, M.: Intelligent opinion mining and sentiment analysis using artificial neural networks. In: International Conference on Neural Information Processing, pp. 103–110. Springer, Cham (2015)

    Google Scholar 

  41. Stuart, K.D., Majewski, M., Trelis, A.B.: Intelligent semantic-based system for corpus analysis through hybrid probabilistic neural networks. In: International Symposium on Neural Networks, pp. 83–92. Springer, Heidelberg (2011)

    Google Scholar 

  42. Tadano, K., Kawashima, K.: Development of 4-DOFs forceps with force sensing using pneumatic servo system. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 2250–2255 (2006)

    Google Scholar 

  43. Tavakoli, M., Patel, R.V., Moallem, M.: A force reflective master-slave system for minimally invasive surgery. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3073, pp. 3077–3082 (2003)

    Google Scholar 

  44. Tomovic, R., Boni, G.: An adaptive artificial hand. IRE Trans. Autom. Control 7, 3–10 (1962)

    Article  Google Scholar 

  45. Wei Tech, A., Khosla, P.K., Riviere, C.N.: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12, 134–142 (2007)

    Article  Google Scholar 

  46. Zhai, D.H., Xia, Y.: Adaptive control for teleoperation system with varying time delays and input saturation constraints. IEEE Trans. Ind. Electron. 63, 6921–6929 (2016)

    Article  Google Scholar 

  47. Zhai, D.H., Xia, Y.: Adaptive control of semi-autonomous teleoperation system with asymmetric time-varying delays and input uncertainties. IEEE Trans. Cybern. 47(11), 3621–3633 (2016)

    Article  Google Scholar 

  48. Zhou, M., Ben-Tzvi, P.: RML glove – an exoskeleton glove mechanism with haptics feedback. IEEE/ASME Trans. Mechatron. 20, 641–652 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out as part of the PBS3/A6/28/2015 project, “The use of augmented reality, interactive voice systems and operator interface to control a crane”, financed by NCBiR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Saków .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saków, M., Miądlicki, K. (2018). Transport Delay and First Order Inertia Time Signal Prediction Dedicated to Teleoperation. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77179-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77178-6

  • Online ISBN: 978-3-319-77179-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics