Skip to main content

Comparative Analysis of MP-Based Solvers to Optimize Distribution Problems in Logistics

  • Conference paper
  • First Online:
Automation 2018 (AUTOMATION 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 743))

Included in the following conference series:

Abstract

Distribution related problems in logistics have many decision variables and constraints that have to be considered simultaneously. Most often, these are the problems in the discrete optimization branch, modeled and optimized using operational research, in particular mathematical programming (MP) models and methods, such as mixed integer linear programming (MILP), integer programming (IP) and integer linear programming (ILP). These methods become ineffective very quickly in the case of larger size problems. Also, the number of decision variables and constraints may exceed the capacity of available MP solvers. To improve their efficiency and reduce the effective size of the solution space of a given problem, hybrid approaches are being developed, integrating MP with other environments. This article discusses the results of comparative analysis of several MP solvers (LINGO, SCIP, GUROBI) in the context of their use for optimization of selected distribution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1998). ISBN 0- 471-98232-6

    Google Scholar 

  2. Apt, K., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York (2006)

    MATH  Google Scholar 

  4. Sitek, P., Wikarek, J.: A hybrid programming framework for modeling and solving constraint satisfaction and optimization problems. In: Scientific Programming, vol. 2016(2016), Article ID 5102616, 13 p. (2016). http://dx.doi.org/10.1155/2016/5102616

  5. Sitek, P.: A hybrid approach to the two-echelon capacitated vehicle routing problem (2E-CVRP). In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 251–263. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05353-0_25

    Chapter  Google Scholar 

  6. Sitek, P., Bzdyra K., Wikarek, J.: A hybrid method for modeling and solving supply chain optimization problems with soft and logical constraints. In: Mathematical Problems in Engineering, vol. 2016(2016), Article ID 1532420, 16 p. (2016). http://dx.doi.org/10.1155/2016/1532420

  7. Lindo. http://www.lindo.com/, Accessed 20 Oct 2016

  8. Codd, E.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970). https://doi.org/10.1145/362384.362685

    Article  MATH  Google Scholar 

  9. Toth, P., Vigo, D.: Vehicle routing: problems, methods, and applications. In: SIAM, Philadelphia (2014). https://doi.org/10.1137/1.9781611973594

  10. Perboli, G., Tadei, R., Vigo, D.: The two-echelon capacitated vehicle routing problem: models and math-based heuristics. Transp. Sci. 45(3), 364–380 (2012). https://doi.org/10.1287/trsc.1110.0368

    Article  Google Scholar 

  11. ORO Group Web-page. http://www.orgroup.polito.it/. Accessed 20 Oct 2016

  12. Mula, J., Peidro, D., Diaz-Madronero, M., Vicens, E.: Mathematical programming models for supply chain production and transport planning. Eur. J. Oper. Res. 204(3), 377–390 (2010). https://doi.org/10.1016/j.ejor.2009.09.008

    Article  MathSciNet  MATH  Google Scholar 

  13. Park, Y.: An integrated approach for production and distribution planning in supply chain management. Int. J. Prod. Res. 43(6), 1205–1224 (2005). https://doi.org/10.1080/00207540412331327718

    Article  MATH  Google Scholar 

  14. Nielsen, P., Michna, Z., Do, N.A.D.: An empirical investigation of lead time distributions. In: Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D. (eds.) APMS 2014. IAICT, vol. 438, pp. 435–442. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44739-0_53

    Google Scholar 

  15. Nielsen, P., Jiang, L., Rytter, N.G.M., Chen, G.: An investigation of forecast horizon and observation fit’s influence on an econometric rate forecast model in the liner shipping industry. Marit. Pol. Manag. 41(7), 667–682 (2014). https://doi.org/10.1080/03088839.2014.960499

    Article  Google Scholar 

  16. Bocewicz, G., Nielsen, I., Banaszak, Z.: Production flows scheduling subject to fuzzy processing time constraints. Int. J. Comput. Integr. Manuf. 29(10), 1105–1127 (2016). https://doi.org/10.1080/0951192x.2016.1145739

    Article  Google Scholar 

  17. Relich, M.: Identifying project alternatives with the use of constraint programming. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology—ISAT 2016—Part I. AISC, vol. 521, pp. 3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46583-8_1

    Google Scholar 

  18. Grzybowska, K., Gajšek, B.: Supply chain logistics platform as a supply chain coordination support. In: Bajo, J., Escalona, M.J., Giroux, S., Hoffa-Dąbrowska, P., Julián, V., Novais, P., Sánchez-Pi, N., Unland, R., Azambuja-Silveira, R. (eds.) PAAMS 2016. CCIS, vol. 616, pp. 61–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39387-2_6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Sitek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wikarek, J., Sitek, P., Stefański, T. (2018). Comparative Analysis of MP-Based Solvers to Optimize Distribution Problems in Logistics. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77179-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77178-6

  • Online ISBN: 978-3-319-77179-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics