Skip to main content

Computing Shortest Paths in 2D and 3D Memristive Networks

  • Chapter
  • First Online:
Handbook of Memristor Networks

Abstract

Global optimisation problems in networks often require shortest path length computations to determine the most efficient route. The simplest and most common problem with a shortest path solution is perhaps that of a traditional labyrinth or maze with a single entrance and exit. Many techniques and algorithms have been derived to solve mazes, which often tend to be computationally demanding, especially as the size of maze and number of paths increase. In addition, they are not suitable for performing multiple shortest path computations in mazes with multiple entrance and exit points. Mazes have been proposed to be solved using memristive networks and in this paper we extend the idea to show how networks of memristive elements can be utilised to solve multiple shortest paths in a single network. We also show simulations using memristive circuit elements that demonstrate shortest path computations in both 2D and 3D networks, which could have potential applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biolek, Z., Biolek, D., Biolkova, V.: Spice model of memristor with nonlinear dopant drift. Radioengineering 18, 210–214 (2009)

    MATH  Google Scholar 

  2. Chandy, K.M., Misra, J.: Distributed computation on graphs: shortest path algorithms. Commun. ACM 25(11), 833–837 (1982). https://doi.org/10.1145/358690.358717

    Article  MathSciNet  MATH  Google Scholar 

  3. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  4. Chua, L., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976). https://doi.org/10.1109/PROC.1976.10092

    Article  MathSciNet  Google Scholar 

  5. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

    Article  MathSciNet  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 1st edn. MIT Press and McGraw-Hill, Cambridge (1990)

    MATH  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  8. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  9. Fortz, B., Rexford, J., Thorup, M.: Traffic engineering with traditional IP routing protocols. IEEE Commun. Mag. 40(10), 118–124 (2002)

    Article  Google Scholar 

  10. Gallo, G., Pallottino, S.: Shortest path methods: a unifying approach. Netflow at Pisa pp. 38–64 (1986)

    Google Scholar 

  11. Gelencser, A., Prodromakis, T., Toumazou, C., Roska, T.: Biomimetic model of the outer plexiform layer by incorporating memristive devices. Phys. Rev. E 85(4), 041,918 (2012)

    Article  Google Scholar 

  12. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)

    MATH  Google Scholar 

  13. Jiang, F., Shi, B.E.: The memristive grid outperforms the resistive grid for edge preserving smoothing. In: European Conference on Circuit Theory and Design, 2009. ECCTD 2009, pp. 181–184. IEEE, New York (2009)

    Google Scholar 

  14. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Google Scholar 

  15. Joglekar, Y.N., Stephen, J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys.30(4), 661 (2009). http://stacks.iop.org/0143-0807/30/i=4/a=001

    Article  Google Scholar 

  16. Kim, H., Sah, M.P., Yang, C., Chua, L.O.: Memristor-based multilevel memory. In: 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), 2010, pp. 1–6 (2010)

    Google Scholar 

  17. Lagzi, I., Soh, S., Wesson, P.J., Browne, K.P., Grzybowski, B.A.: Maze solving by chemotactic droplets. J. Am. Chem. Soc. 132(4), 1198–1199 (2010)

    Article  Google Scholar 

  18. Mishra, S., Bande, P.: Maze solving algorithms for micro mouse. In: IEEE International Conference on Signal Image Technology and Internet Based Systems, 2008. SITIS ’08, pp. 86–93 (2008)

    Google Scholar 

  19. Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Biophys. Chem. 107(1), 1–5 (2004)

    Article  Google Scholar 

  20. Nakagaki, T., Yamada, H., Toth, A.: Intelligence: maze-solving by an amoeboid organism. Nature (2000)

    Google Scholar 

  21. Pallottino, S., Scutella, M.G.: Shortest path algorithms in transportation models: classical and innovative aspects. Equilib. Adv. Transp. Model. 245, 281 (1998)

    MATH  Google Scholar 

  22. Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)

    Article  Google Scholar 

  23. Pershin, Y.V., Di Ventra, M.: Solving mazes with memristors: a massively parallel approach. Phys. Rev. E 84(4), 046,703 (2011)

    Article  Google Scholar 

  24. Prodromakis, T., Peh, B.P., Papavassiliou, C., Toumazou, C.: A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Devices 58(9), 3099–3105 (2011)

    Article  Google Scholar 

  25. Prodromakis, T., Toumazou, C.: A review on memristive devices and applications. In: 2010 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 934–937. IEEE, New York (2010)

    Google Scholar 

  26. Prodromakis, T., Toumazou, C., Chua, L.: Two centuries of memristors. Nat. Mater. 11(6), 478 (2012)

    Article  Google Scholar 

  27. Reyes, D.R., Ghanem, M.M., Whitesides, G.M., Manz, A.: Glow discharge in microfluidic chips for visible analog computing. Lab Chip 2(2), 113–116 (2002)

    Article  Google Scholar 

  28. Reynolds, A.M.: Maze-solving by chemotaxis. Phys. Rev. E 81(6), 062,901 (2010)

    Article  Google Scholar 

  29. Schrijver, A.: On the history of combinatorial optimization (till 1960). Handbook of Discrete Optimization, pp. 1–68 (2005)

    MATH  Google Scholar 

  30. Sharma, M., Robeonics, K.: Algorithms for micro-mouse. In: International Conference on Future Computer and Communication, 2009. ICFCC 2009, pp. 581–585 (2009)

    Google Scholar 

  31. Snider, G.: Self-organized computation with unreliable, memristive nanodevices. IOP Sci. Nanotechnol. 8(36), 365,202 (2007)

    Article  Google Scholar 

  32. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  33. Williams, R.: How we found the missing memristor. Spectr. IEEE 45(12), 28–35 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the CHIST-ERA ERAnet EPSRC EP/J00801X/1 and EP/K017829/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themistoklis Prodromakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ye, Z., Wu, S.H.M., Prodromakis, T. (2019). Computing Shortest Paths in 2D and 3D Memristive Networks. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics