Skip to main content

Spiking in Memristor Networks

  • Chapter
  • First Online:
Handbook of Memristor Networks

Abstract

Memristors have been suggested for the use as artificial synapses and have performed well in this role in simulations with artificial spiking neurons. We will show that real world memristors natively spike and describe the properties of these spikes. A network of purely memristors should not show any behaviour in addition to that expected from a single memristor. Networks of 2 and 3 memristor combinations were investigated. We demonstrate that, if the memristors are wired together with opposing polarity, oscillations and bursting spikes emerge. We compare two types of memristors, ‘filamentary’ and standard memristors (which are closer to Chua’s theoretical memristors), and found that standard memristors do not exhibit these rich behaviours if they are wired with the same polarity. We propose that these oscillations and spikes may be similar phenomenon to brainwaves and neural spike trains and suggest that these behaviours can be used to perform brain-like computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  3. Toumazou, C., Prodromakis, T., Chua, L.: Two centuries of memristors. Nat. Mater. 11, 478–481 (2012)

    Article  Google Scholar 

  4. Askinaga, H., Shima, H.: Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 2237–2251 (2010)

    Article  Google Scholar 

  5. Wu, J., Mobly, K., McCreery, R.L.: Electronic characteristics of fluorene/TiO\(_2\) molecular heterojunctions. J. Chem. Phys. 126, 024704 (2007)

    Article  Google Scholar 

  6. Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., Fontana, M.P.: Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoSci (2011). https://doi.org/10.1007/s12668-011-0004-7

    Article  Google Scholar 

  7. Linares-Barranco, B., Serrano-Gotarredona, T.: Exploiting memristance in adaptive asynchronous spiking neuromorphic nanotechnology systems. In: 9th IEEE Conference on Nanotechnology, pp. 601–609 (2009)

    Google Scholar 

  8. Zamarreno-Ramos, C., Carmunas, L.A., Pérez-Carrasco, J.A., Masquelier, T., Serrano-Gotarredona, T., Linares-Barranco, B.: On spike-timing dependent plasticity, memristive devices and building a self-learning visual cortex. Front. Neuormorphic Eng. 5, 26(1)–26(20) (2011)

    Google Scholar 

  9. Kosta, S.P., Kosta, Y.P., Bhatele, M., Dubey, Y.M., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel, B.: Human blood liquid memristor. Int. J. Med. Eng. Inform. 16–29 (2011)

    Article  Google Scholar 

  10. Lütken, C.A., Grimes, S., Martinsen, O.G.: Memristive properties of human sweat ducts. In: World Congress on Medical Physics and Biomedial Engineering, vol. 25/7, pp. 696–698 (2009)

    Google Scholar 

  11. Adamatzky, A., Gale, E., de Lacy Costello, B.: Are slime moulds living memristors? (2013) arXiv, June:1306.3414v1

    Google Scholar 

  12. Chua, L., Sbitnev, V., Kim, H.: Hodgkin-Huxley axon is made of memristors. Int. J. Bifurcat. Chaos 22, 1230011 (48pp) (2012)

    Article  Google Scholar 

  13. Chua, L., Sbitnev, V., Kim, H.: Neurons are poised near the edge of chaos. Int. J. Bifurcat. Chaos 11, 1250098 (49pp) (2012)

    Article  Google Scholar 

  14. Gergel-Hackett, N., Hamadani, B., Dunlap, B., Suehle, J., Ricther, C., Hacker, C., Gundlach, D.: A flexible solution-processed memristor. IEEE Electron Device Lett. 30, 706–708 (2009)

    Article  Google Scholar 

  15. Gale, E., Pearson, D., Kitson, S., Adamatzky, A., de Lacy Costello, B.: Different behaviour seen in flexible Titanium Dioxide sol-gel memristors dependent on the choice of electrode material. In: Technical Digest of Frontiers in Electronic Materials, pp. 577–578. Wiley-VCH, Weinheim, Germany (2012)

    Google Scholar 

  16. Bi, G.-Q., Poo, M.-M.: Spike timing for LTP and LTD in culture. J. Neurosci. 18, 10472–10565 (1998)

    Article  Google Scholar 

  17. Gale, E.: The Memory-Conservation Model of Memristance (Forthcoming)

    Google Scholar 

  18. Gale, E.M., de Lacy Costello, B., Adamatzky, A.: Filamentary extension of the Mem-Con theory of memristance and its application to titanium dioxide Sol-Gel memristors. In: IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA 2012), Kuala Lumpur, Malaysia, November 2012

    Google Scholar 

  19. Troitsky, V.I., Berzina, T.S., Fontana, M.P.: Langmuir–Blodgett assemblies with patterned conductive polyaniline layers. Mater. Sci. Eng. 22, 239 (2002)

    Article  Google Scholar 

  20. Troitsky, V.I., Berzina, T.S., Fontana, M.P.: Deposition of uniform conductive polyaniline films and approach for their patterning. Synth. Met. 129, 39 (2002)

    Article  Google Scholar 

  21. Gale, E., de Lacy Costello, B., Adamatzky, A.: Observation, characterization and modeling of memristor current spikes. Appl. Math. Inf. Sci. 7, 1395–1403 (2013)

    Article  Google Scholar 

  22. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  23. Hebb, D.: The Organisation of Behaviour. Wiley, New York (1949)

    Google Scholar 

  24. Masumoto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. CAS–31, 1055–1058 (1984)

    Article  MathSciNet  Google Scholar 

  25. Chua, L.: Chua’s circuit: ten years later. IEICE Trans. Fundam. E77–A, 1811–1821 (1994)

    Google Scholar 

  26. Madan, R.N.: Chua’s Circuit: A Paradigm for Chaos. World Scientific, Singapore (1993)

    Book  Google Scholar 

  27. Itoh, M., Chua, L.: Memristor oscillators. Int. J. Bifurcat. Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  Google Scholar 

  28. Messias, M., Nespoli, C., Botta, V.A.: Hopf bifurcation from lines of equilibria without parameters in memristor oscillators. Int. J. Bifurcat. Chaos 20, 437–450 (2010)

    Article  MathSciNet  Google Scholar 

  29. Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46, 237–238 (2010)

    Google Scholar 

  30. Bao, B.-C., Xu, J.-P., Liu, Z.: Initial state dependent dynamical behaviors in a memristor based chaotic circuit. Chin. Phys. Lett. 27, 070504 (2010)

    Article  Google Scholar 

  31. Bo-Cheng, B., Ping, X.J., Guo-Hua, Z., Zheng-Hua, M., Ling, Z.: Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20, 120502 (7pp) (2011)

    Google Scholar 

  32. Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A chaotic circuit based on hewlett-packard memristor. Chaos 22, 023136 (2012)

    Article  MathSciNet  Google Scholar 

  33. Medeiros-Ribeiro, G., Pickett, M.D., Stanley Williams, R.: A scalable neuristor built with Mott memristors. Nat. Mater. 16, 114–117 (2012)

    Google Scholar 

  34. Muthuswamy, B.: Memristor based circuit chaos. IETE Tech. Rev. 26, 1–15 (2009)

    Article  Google Scholar 

  35. Gale, E., Pearson, D., Kitson, S., Adamatzky, A., de Lacy Costello, B.: Different behaviour seen in flexible titanium dioxide sol-gel memristors dependent on the choice of electrode material. In: Technical Digest of Frontiers in Electronic Materials, pp. 577–578. Nature Conference. Wiley-VCH, June 2012

    Google Scholar 

  36. Gale, E., Pearson, D., Kitson, S., Adamatzky, A., de Lacy Costello, B.: Aluminium electrodes effect the operation of titanium oxide sol-gel memristors (2011). arXiv:1106.6293v1

  37. Erokhin, V., Berzina, T., Fontana, M.P.: Hybrid electronic device based on polyaniline-polyethylenoxide junction. J. Appl. Phys. 97, 064501 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gale, E., de Lacy Costello, B., Adamatzky, A. (2019). Spiking in Memristor Networks. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics