Skip to main content

Autonomous 3D Exploration of Large Areas: A Cooperative Frontier-Based Approach

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10756))

Abstract

In this article a coordinated approach to 3D exploration of large uncluttered areas with a team of flying robots with constrained payload is proposed. Coordination is used as trump card for an effective exploration in feasible time and to overcome problems related to the limited computational power and autonomy of the robot platform. In particular, a 3D exploration strategy based on a combination of local and global information and a 4D motion planning are used for achieving 3D coverage of completely unknown environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Target list is dynamic both in length and content. For the sake of simplicity, the notation has been simplified by removing time dependence of targets.

  2. 2.

    Single–agent exploration: https://youtu.be/iR0O06BE-fo,

    Multi–agent exploration: https://youtu.be/Oi6HLjiC3YI.

References

  1. Pajares, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 81(4), 281–329 (2015)

    Article  Google Scholar 

  2. Siebert, S., Teizer, J.: Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014)

    Article  Google Scholar 

  3. Scaramuzza, D., Achtelik, M.C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., Achtelik, M.W., Chli, M., Chatzichristofis, S., Kneip, L., et al.: Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robot. Autom. Mag. 21(3), 26–40 (2014)

    Article  Google Scholar 

  4. Maurović, I., Petrović, I., et al.: Autonomous exploration of large unknown indoor environments for dense 3D model building. IFAC Proc. Vol. 47(3), 10188–10193 (2014)

    Article  Google Scholar 

  5. Shen, S., Michael, N., Kumar, V.: Autonomous indoor 3D exploration with a micro-aerial vehicle. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 9–15. IEEE (2012)

    Google Scholar 

  6. Charrow, B., Kahn, G., Patil, S., Liu, S., Goldberg, K., Abbeel, P., Michael, N., Kumar, V.: Information-theoretic planning with trajectory optimization for dense 3D mapping. In: Robotics: Science and Systems (2015)

    Google Scholar 

  7. Bachrach, A., He, R., Roy, N.: Autonomous flight in unknown indoor environments. Int. J. Micro Air Veh. 1(4), 217–228 (2009)

    Article  Google Scholar 

  8. Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., Younes, H.: Coordination for multi-robot exploration and mapping. In: AAAI/IAAI, pp. 852–858 (2000)

    Google Scholar 

  9. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Rob. 21(3), 376–386 (2005)

    Article  Google Scholar 

  10. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA, pp. 146–151. IEEE (1997)

    Google Scholar 

  11. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. ACM (1998)

    Google Scholar 

  12. Stachniss, C., Grisetti, G., Burgard, W.: Information gain-based exploration using rao-blackwellized particle filters. Robot. Sci. Syst. 2, 65–72 (2005)

    Google Scholar 

  13. González-Banos, H.H., Latombe, J.-C.: Navigation strategies for exploring indoor environments. Int. J. Robot. Res. 21(10–11), 829–848 (2002)

    Article  Google Scholar 

  14. Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, D., Morris, A., Omohundro, Z., et al.: Autonomous exploration and mapping of abandoned mines. IEEE Robot. Autom. Mag. 11(4), 79–91 (2004)

    Article  Google Scholar 

  15. Shade, R., Newman, P.: Choosing where to go: complete 3D exploration with stereo. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2806–2811. IEEE (2011)

    Google Scholar 

  16. Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4557–4564. IEEE (2012)

    Google Scholar 

  17. Surmann, H., Nüchter, A., Hertzberg, J.: An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robot. Auton. Syst. 45(3), 181–198 (2003)

    Article  Google Scholar 

  18. Dornhege, C., Kleiner, A.: A frontier-void-based approach for autonomous exploration in 3D. Adv. Robot. 27(6), 459–468 (2013)

    Article  Google Scholar 

  19. Cohen, W.W.: Adaptive mapping and navigation by teams of simple robots. Robot. Auton. Syst. 18(4), 411–434 (1996)

    Article  Google Scholar 

  20. Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 3, pp. 3016–3023. IEEE (2002)

    Google Scholar 

  21. Lagoudakis, M.G., Berhault, M., Koenig, S., Keskinocak, P., Kleywegt, A.J.: Simple auctions with performance guarantees for multi-robot task allocation. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 1, pp. 698–705. IEEE (2004)

    Google Scholar 

  22. Sariel, S., Balch, T.: Real time auction based allocation of tasks for multi-robot exploration problem in dynamic environments. In: Proceedings of the AAAI-05 Workshop on Integrating Planning into Scheduling, AAAI Palo Alto, CA, pp. 27–33 (2005)

    Google Scholar 

  23. Sariel, S., Balch, T.R.: Efficient bids on task allocation for multi-robot exploration. In: FLAIRS Conference, pp. 116–121 (2006)

    Google Scholar 

  24. Puig, D., García, M.A., Wu, L.: A new global optimization strategy for coordinated multi-robot exploration: development and comparative evaluation. Robot. Auton. Syst. 59(9), 635–653 (2011)

    Article  Google Scholar 

  25. Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and analysis. Proc. IEEE 94(7), 1257–1270 (2006)

    Article  Google Scholar 

  26. Werger, B.B., Matarić, M.J.: Broadcast of local eligibility for multi-target observation. In: Parker, L.E., Bekey, G., Barhen, J. (eds.) Distributed Autonomous Robotic Systems 4, pp. 347–356. Springer, Tokyo (2000). https://doi.org/10.1007/978-4-431-67919-6_33

    Chapter  Google Scholar 

  27. Faigl, J., Kulich, M., Přeučil, L.: Goal assignment using distance cost in multi-robot exploration. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3741–3746. IEEE (2012)

    Google Scholar 

  28. Stachniss, C.: C implementation of the hungarian method. Last accessed October, vol. 27, p. 2015 (2004)

    Google Scholar 

  29. Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)

    Article  Google Scholar 

  30. Kulich, M., Faigl, J., Přeučil, L.: On distance utility in the exploration task. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 4455–4460. IEEE (2011)

    Google Scholar 

  31. Zhu, C., Ding, R., Lin, M., Wu, Y.: A 3D frontier-based exploration tool for MAVS. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 348–352. IEEE (2015)

    Google Scholar 

  32. Keidar, M., Kaminka, G.A.: Robot exploration with fast frontier detection: theory and experiments. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, vol. 1, pp. 113–120 (2012)

    Google Scholar 

  33. Faigl, J., Kulich, M.: On benchmarking of frontier-based multi-robot exploration strategies. In: 2015 European Conference on Mobile Robots (ECMR), pp. 1–8. IEEE (2015)

    Google Scholar 

  34. Triebel, R., Pfaff, P., Burgard, W.: Multi-level surface maps for outdoor terrain mapping and loop closing. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2276–2282. IEEE (2006)

    Google Scholar 

  35. Dryanovski, I., Morris, W., Xiao, J.: Multi-volume occupancy grids: An efficient probabilistic 3D mapping model for micro aerial vehicles. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1553–1559. IEEE (2010)

    Google Scholar 

  36. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)

    Article  Google Scholar 

  37. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  38. Robotic Operating System. http://www.ros.org/. Indigo Version

  39. Silvestri, L., Pallottino, L., Nardi, S.: Design of an indoor autonomous robot navigation system for unknown environments. In: Mazal, J. (ed.) MESAS 2017. LNCS, vol. 10756, pp. 153–169. Springer, Cham (2017)

    Google Scholar 

  40. Gazebo Simulator. http://www.gazebosim.org/

  41. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon “next-best-view” planner for 3D exploration. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1462–1468. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Mannucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mannucci, A., Nardi, S., Pallottino, L. (2018). Autonomous 3D Exploration of Large Areas: A Cooperative Frontier-Based Approach. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2017. Lecture Notes in Computer Science(), vol 10756. Springer, Cham. https://doi.org/10.1007/978-3-319-76072-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76072-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76071-1

  • Online ISBN: 978-3-319-76072-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics