Skip to main content

Effects of Sleep Deprivation and Experience on Sleep Characteristics and Memory Formation Based on EEG Analysis

  • Reference work entry
  • First Online:
Handbook of Computational Neurodegeneration

Abstract

Sleep is believed to play an important role in cognitive functions. The underlying mechanisms of the relationship between the effects of waking experiences (i.e., sleep deprivation [SD] and enriched environment [EE]) on sleep characteristics (sleep states and brain waves) are believed to be beneficial. Sleep is divided into two main stages: non-rapid eye movement (non-REM) and REM sleep. Electroencephalogram (EEG) in adult mice was used in order to record and compare changes in sleep stages and specific brain waves (i.e., oscillations) during sleep following those waking experiences. Results showed that both waking experiences significantly increase NREM sleep amount and duration. However, SD and EE differentially affect slow wave activity (SWA: 0.5–4.0 Hz) and spindle-rich sigma activity (9–16 Hz), the two main sleep oscillations of NREM sleep. The conclusions were that extended wakefulness (i.e., SD) and learning (i.e., EE) differentially affect NREM EEG signatures (SWA, spindles). The obtained results support previous data which shows that these oscillations are important for cognition and further suggest that their differential regulation by experiences may account for different functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel T, Havekes R, Saletin J, Walker M (2013) Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol 23(17):R774–R788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aeschbach D, Cutler A, Ronda J (2008) A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J Neurosci 28(11):2766–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhola P, Polo-Kantola P (2007) Sleep deprivation: impact on cognitive performance. Neuropsychiatr Dis Treat 3(5):553–567

    PubMed  PubMed Central  Google Scholar 

  • Ancoli-Israel S, Klauber MR, Butters N, Parker L, Kripke DF (1991) Dementia in institutionalized elderly: relation to sleep apnea. J Am Geriatr Soc 39(3):258–263

    Article  CAS  PubMed  Google Scholar 

  • Assefa S, Diaz-Abad M, Wickwire E, Scharf S (2015) The functions of sleep. AIMS Neurosci 2(3):155–171

    Article  Google Scholar 

  • Borbély A (1982) A two process model of sleep regulation. Hum Neurobiol 1(1):195–204

    PubMed  Google Scholar 

  • Borbély A, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythm 14(6):559–570

    Article  Google Scholar 

  • Borbély A, Tobler I, Hanagasioglu M (1984) Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behav Brain Res 14(3):171–182

    Article  PubMed  Google Scholar 

  • Born J, Rasch B (2013) About sleep’s role in memory. Physiol Rev 93(2):681–766

    Article  PubMed  PubMed Central  Google Scholar 

  • Brière M, Forest G, Lussier I, Godbout R (2000) Implicit verbal recall correlates positively with EEG sleep spindle activity. Sleep 23(Suppl 2):A219

    Google Scholar 

  • Carskadon M, Dement W (2011) Normal human sleep: an overview. In: Kryger M, Roth T, Dement W (eds) Principles and practice of sleep medicine5th edn. Elsevier Saunders, St. Louis, pp 16–26

    Chapter  Google Scholar 

  • Clemens Z, Fabó D, Halász P (2005) Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 132(2):529–535

    Article  CAS  PubMed  Google Scholar 

  • Culebras A (1999) Sleep disorders and neurological disease.1st edn. M. Dekker, New York

    Book  Google Scholar 

  • Czeisler C, Duffy J, Shanahan T, Brown E, Mitchell J, Rimmer D, Ronda J, Silva E, Allan J, Emens J, Dijk D, Kronauer R (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284(5423):2177–2181

    Article  CAS  PubMed  Google Scholar 

  • da Costa Souza A, Ribeiro S (2015) Sleep deprivation and gene expression. Curr Top Behav Neurosci 25:65–90

    Article  PubMed  Google Scholar 

  • Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11:114–126

    Article  CAS  PubMed  Google Scholar 

  • Diekelmann S, Büchel C, Born J, Rasch B (2011) Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nat Neurosci 14(3):381–386

    Article  CAS  PubMed  Google Scholar 

  • Dijk D, von Schantz M (2005) Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. J Biol Rhythms 20(4):279–290

    Article  PubMed  Google Scholar 

  • Doran S, Van Dongen H, Dinges D (2001) Sustained attention performance during sleep deprivation: evidence of state instability. Arch Ital Biol 139(3):253–267

    CAS  PubMed  Google Scholar 

  • Drummond S, Brown G, Gillin J, Stricker J, Wong E, Buxton R (2000) Altered brain response to verbal learning following sleep deprivation. Nature 403:655–657

    Article  CAS  PubMed  Google Scholar 

  • Drummond S, Gillin JC, Brown GG (2001) Increased cerebral response during a divided attention task following sleep deprivation. J Sleep Res 10(2):85–92

    Article  CAS  PubMed  Google Scholar 

  • Eschenko O, Molle M, Born J, Sara S (2006) Elevated sleep spindle density after learning or after retrieval in rats. J Neurosci 26(50):12914–12920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everson C, Gilliland M, Kushida C, Pilcher J, Fang V, Refetoff S (1989) Sleep deprivation in the rat: IX. Recovery. Sleep 12:60–67

    CAS  PubMed  Google Scholar 

  • Fogel S, Nader R, Cote K, Smith C (2007) Sleep spindles and learning potential. Behav Neurosci 121(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Franken P, Dijk D, Tobler I, Borbély A (1991) Sleep deprivation in the rat: effects on electroencephalogram power spectra, vigilance states, and cortical temperature. Am J Physiol 261:198–208

    Google Scholar 

  • Gais S, Albouy G, Boly M, Dang-Vu TT, Darsaud A, Desseilles M, Rauchs G, Schabus M, Sterpenich V, Vandewalle G, Maquet P, Peigneux P (2007) Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci U S A 104(47):18778–18783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genzel L, Kroes M, Dresler M, Battaglia F (2014) Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci 37(1):10–19

    Article  CAS  PubMed  Google Scholar 

  • Goel N, Rao H, Durmer J, Dinges D (2009) Neurocognitive consequences of sleep deprivation. Semin Neurol 29(04):320–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Pilar J, Lubeiro A, Poza J, Hornero R, Ayuso M, Valcárcel C, Haidar K, Blanco J, Molina V (2017) Functional EEG network analysis in schizophrenia: evidence of larger segregation and deficit of modulation. Prog Neuro-Psychopharmacol Biol Psychiatry 76:116–123

    Article  Google Scholar 

  • Green S (2011) Biological rhythms, sleep, and hypnosis.1st edn. Palgrave Macmillan, Basingstoke

    Book  Google Scholar 

  • Greene R, Frank M (2010) Slow wave activity during sleep: functional and therapeutic implications. Neuroscientist 16(6):618–633

    Article  PubMed  Google Scholar 

  • Guarnieri B, Adorni F, Musicco M, Appollonio I, Bonanni E, Caffarra P, Caltagirone C, Cerroni G, Concari L, Cosentino FI, Ferrara S, Fermi S, Ferri R, Gelosa G, Lombardi G, Mazzei D, Mearelli S, Morrone E, Murri L, Nobili FM, Passero S, Perri R, Rocchi R, Sucapane P, Tognoni G, Zabberoni S, Sorbi S (2012) Prevalence of sleep disturbances in mild cognitive impairment and dementing disorders: a multicenter Italian clinical cross-sectional study on 431 patients. Dement Geriatr Cogn Disord 33(1):50–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Headley D, Paré D (2017) Common oscillatory mechanisms across multiple memory systems. NPJ Sci Learn 2(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Holth JK, Bomben VC, Reed JG, Inoue T, Younkin L, Younkin SG, Pautler RG, Botas J, Noebels JL (2013) Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. The Journal of neuroscience: the official journal of the Society for Neuroscience 33(4):1651–1659. https://doi.org/10.1523/JNEUROSCI.3191-12.2013

  • Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE, Finn MB, Manis M, Geerling JC, Fuller PM, Lucey BP, Holtzman DM (2019) The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science (New York, N.Y.) 363(6429):880–884. https://doi.org/10.1126/science.aav2546

  • Huber R, Deboer T, Tobler I (2000) Topography of EEG dynamics after sleep deprivation in mice. J Neurophysiol 84:1888–1893

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Felice Ghilardi M, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430(6995):78–81

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Tononi G, Cirelli C (2007) Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30(2):129–139

    Article  PubMed  Google Scholar 

  • Hwang D, Golby A (2006) The brain basis for episodic memory: insights from functional MRI, intracranial EEG, and patients with epilepsy. Epilepsy Behav 8(1):115–126

    Article  PubMed  Google Scholar 

  • Killgore W (2007) Effects of sleep deprivation on cognition. Prog Brain Res 185:105–129

    Article  Google Scholar 

  • Kumar T, Jha S (2012) Sleep deprivation impairs consolidation of cued fear memory in rats. PLoS One 7(10):e47042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurth S, Dean D, Achermann P, O’Muircheartaigh J, Huber R, Deoni S, LeBourgeois M (2016) Increased sleep depth in developing neural networks: new insights from sleep restriction in children. Front Hum Neurosci 10:456

    Article  PubMed  PubMed Central  Google Scholar 

  • Létourneau P, Niyonsenga T, Carrier É, Praud E, Praud J (2002) Influence of 24-hour sleep deprivation on respiration in lambs. Pediatr Res 52(5):697–705

    Article  PubMed  Google Scholar 

  • Mander BA, Santhanam S, Saletin JM, Walker MP (2011) Wake deterioration and sleep restoration of human learning. Curr Biol 21(5):R183–R184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mednick SC, Nakayama K, Cantero JL, Atienza M, Levin AA, Pathak N, Stickgold R (2002) The restorative effect of naps on perceptual deterioration. Nat Neurosci 5(7):677–681

    Article  CAS  PubMed  Google Scholar 

  • Mednick SC, Nakayama K, Stickgold R (2003) Sleep-dependent learning: a nap is as good as a night. Nat Neurosci 6:697–698. https://doi.org/10.1038/nn1078

    Article  CAS  PubMed  Google Scholar 

  • Mednick SC, Drummond SP, Boynton GM, Awh E, Serences J (2008) Sleep-dependent learning and practice-dependent deterioration in an orientation discrimination task. Behav Neurosci 122(2):267–272. https://doi.org/10.1037/0735-7044.122.2.267

    Article  PubMed  PubMed Central  Google Scholar 

  • Molaee-Ardekani B, Senhadji L, Shamsollahi M, Wodey E, Vosoughi-Vahdat B (2007) Delta waves differently modulate high frequency components of EEG oscillations in various unconsciousness levels. Conf Proc IEEE Eng Med Biol Soc 2007:1294–1297

    PubMed Central  Google Scholar 

  • Mu Q, Mishory A, Johnson K, Nahas Z, Kozel F, Yamanaka K, Bohning D, George M (2005) Decreased brain activation during a working memory task at rested baseline is associated with vulnerability to sleep deprivation. Sleep 28(4):433–448

    Article  PubMed  Google Scholar 

  • Murphy MP, LeVine H 3rd (2010) Alzheimer’s disease and the amyloid-beta peptide. Journal of Alzheimer’s disease: JAD 19(1):311–323. https://doi.org/10.3233/JAD-2010-1221

  • Ning S, Jorfi M (2019) Beyond the sleep-amyloid interactions in Alzheimer’s disease pathogenesis. J Neurophysiol 122(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Olbrich E, Landolt H, Achermann P (2013) Effect of prolonged wakefulness on electroencephalographic oscillatory activity during sleep. J Sleep Res 23(3):255–262

    Article  Google Scholar 

  • Orzeł-Gryglewska J (2010) Consequences of sleep deprivation. Int J Occup Med Environ Health 23(1):95–114

    Article  PubMed  Google Scholar 

  • Pfurtscheller G, Lopes da Silva F (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Purves D, Augustine G, Fitzpatrick D, Hall W, LaMantia A, McNamara J, Williams S (2004) Neuroscience.3rd edn. Sinauer Associates, Sunderland, pp 665–669

    Google Scholar 

  • Rechtschaffen A, Bergmann BM (1995) Sleep deprivation in the rat by the disk-over-water method. Behavioural Brain Research 69:55–63

    Google Scholar 

  • Schwierin B, Borbély A, Tobler I (1999) Prolonged effects of 24-h total sleep deprivation on sleep and sleep EEG in the rat. Neurosci Lett 261(1–2):61–64

    Article  CAS  PubMed  Google Scholar 

  • Sejnowski T, Destexhe A (2000) Why do we sleep? Brain Res 886(1–2):208–223

    Article  CAS  PubMed  Google Scholar 

  • Shokri-Kojori E, Wang G-J, Wiers CE, Demiral SB, Guo M, Kim S, Lindgren E, Ramirez V, Zehra A, Freeman C, Miller G, Manza P, Vastava T, Santi S, Tomasi D, Benveniste H, Volkow ND (2018) β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A 115:4483–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel A, Zalcman S (2009) The neuroimmunological basis of behavior and mental disorders.1st edn. Springer, Boston

    Book  Google Scholar 

  • Smith S (2005) EEG in neurological conditions other than epilepsy: when does it help, what does it add? J Neurol Neurosurg Psychiatry 76(Suppl 2):ii8–ii12

    PubMed  PubMed Central  Google Scholar 

  • Thompson K, Franklin C (2010) The post-traumatic insomnia workbook.1st edn. New Harbinger Publications, Oakland

    Google Scholar 

  • Tobler I, Borbély A, Groos G (1983) The effect of sleep deprivation on sleep in rats with suprachiasmatic lesions. Neurosci Lett 42(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Vyazovskiy V, Borbély A, Tobler I (2002) Interhemispheric sleep EEG asymmetry in the rat is enhanced by sleep deprivation. J Neurophysiol 88(5):2280–2286

    Article  PubMed  Google Scholar 

  • Vyazovskiy V, Welker E, Fritschy J, Tobler I (2004) Regional pattern of metabolic activation is reflected in the sleep EEG after sleep deprivation combined with unilateral whisker stimulation in mice. Eur J Neurosci 20(5):1363–1370

    Article  PubMed  Google Scholar 

  • Wagner U, Gais S, Haider H, Verleger R, Born J (2004) Sleep inspires insight. Nature 427(6972):352–355. https://doi.org/10.1038/nature02223

    Article  CAS  PubMed  Google Scholar 

  • Walker M (2009) The role of sleep in cognition and emotion. Ann N Y Acad Sci 1156(1):168–197

    Article  PubMed  Google Scholar 

  • Walker MP, Stickgold R (2004) Sleep-dependent learning and memory consolidation. Neuron 44(1):121–133. https://doi.org/10.1016/j.neuron.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  • Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R (2002) Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35(1):205–211. https://doi.org/10.1016/S0896-6273(02)00746-8

  • Walker MP, Brakefield T, Hobson JA, Stickgold R (2003a) Dissociable stages of human memory consolidation and reconsolidation. Nature 425(6958):616–620. https://doi.org/10.1038/nature01930

    Article  CAS  PubMed  Google Scholar 

  • Walker MP, Brakefield T, Seidman J, Morgan A, Hobson JA, Stickgold R (2003b) Sleep and the time course of motor skill learning. Learn Mem 10(4):275–284. https://doi.org/10.1101/lm.58503

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Skolariki, K., Seibt, J. (2023). Effects of Sleep Deprivation and Experience on Sleep Characteristics and Memory Formation Based on EEG Analysis. In: Vlamos, P., Kotsireas, I.S., Tarnanas, I. (eds) Handbook of Computational Neurodegeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-75922-7_56

Download citation

Publish with us

Policies and ethics