Skip to main content

Building Modelling Methodology Combined to Robust Identification for the Temperature Prediction of a Thermal Zone in a Multi-zone Building

  • Conference paper
  • First Online:
  • 1365 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10758))

Abstract

Building thermal modelling plays an important role in managing the thermal comfort and the energy consumption of buildings. A major challenge for modellers is how to deal with uncertainty problems in order to have a robust model with an acceptable computational time for the improvement of predictive control. This paper presents a methodology which allows obtaining the good model of a controllable thermal zone able to adapt regularly to the measurements by a robust identification procedure. Its input data are achieved by the modelling simplification of adjacent zones under uncontrollable uncertainties. This method is applied for a multi-zone positive energy building in south of France to validate our approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://apps1.eere.energy.gov/buildings/energyplus.

References

  1. Costa, A., Keane, M.M.: Building operation and energy performance: monitoring, analysis and optimisation toolkit. Appl. Energ. 101, 310–316 (2013)

    Article  Google Scholar 

  2. Amara, F., Agbossou, K., Cardenas, A., Dubé, Y., Kelouwani, S.: Comparison and simulation of building thermal models for effective energy management. Smart Grid Renew. Energ. 6, 95–112 (2015)

    Article  Google Scholar 

  3. Mendes, N., Oliveira, G.H., De Araújo, H.X.: Building thermal performance analysis by using Matlab/Simulink. In: Seventh International IBPSA Conference, Rio de Janeiro, Brazil, pp. 473–480 (2001)

    Google Scholar 

  4. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley, Chichester (2008)

    MATH  Google Scholar 

  5. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991)

    Article  Google Scholar 

  6. Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., Thomas, S.: Application of sensitivity analysis in design of sustainable buildings. Renew. Energ. 34, 2030–2036 (2009)

    Article  Google Scholar 

  7. Westphal, F.S., Lamberts, R.: Building simulation calibration using sensitivity analysis. In: 9th IBPSA Conference, Montréal, Canada (2005)

    Google Scholar 

  8. Mejri, O.: Développement de méthodes de diagnostic énergétique des bâtiments. Ph.D. thesis, Universités de Tunis El Manar et Bordeaux 1 (2011)

    Google Scholar 

  9. Kominek, P., Tumova, E., Hirs, J.: Sensitivity analysis of residential building simulation parameters. In: 9th International Conference, High Tatras, Slovakia (2017)

    Google Scholar 

  10. Lavin, R.B., Rohlig, K.J., Becker, D.K.: Sensitivity analysis techniques for the performance assessment of a radioactive waste repository. In: Euradwaste - Seventh European Commission Conference, pp. 387–397 (2008). ISBN: 978-92-79-13105-9

    Google Scholar 

  11. Hopfe, C.J., Hensen, J.L.M.: Uncertainty analysis in building performance simulation for design support. Energ. Build. 43, 2798–2805 (2011)

    Article  Google Scholar 

  12. Nguyen, A.T., Reiter, S.: A performance comparison of sensitivity analysis methods for building energy models. Build. Simul. 8(6), 651–664 (2015)

    Article  Google Scholar 

  13. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. MMCE 1(4), 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S.S., Mauntz, W.: Estimating the approximation error when fixing unessential factors in GSA. Reliab. Syst. Saf. 92, 957–960 (2007)

    Article  Google Scholar 

  15. Cukier, R.I., Fortuin, C.M., Shuler, K.E., Petschek, A.G., Schaibly, J.K.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients I. Theory. J. Chem. Phys. 59(8), 3873–3878 (1973)

    Article  Google Scholar 

  16. Saltelli, A., Tarantola, S., Chan, K.: A quantitative, model independent method for global sensitivity analysis of model output. Technometrics 41(1), 39–56 (1999)

    Article  Google Scholar 

  17. Friendly, M., Denis, D.: The early origins and development of the scatterplot. J. Hist. Behav. Sci. 41(2), 103–130 (2005)

    Article  Google Scholar 

  18. Clarke, J.A., Strachan, P., Pernot, C.: An approach to the calibration of building energy simulation models. ASHRAE Trans. 99, 917–927 (1993)

    Google Scholar 

  19. Reddy, T.A.: Literature review on calibration of building energy simulation programs: uses, problems, procedures, uncertainty and tools. ASHRAE Trans. 112, 226–240 (2006)

    Google Scholar 

  20. O’Neill, Z., Eisenhower, B.: Leveraging the analysis of parametric uncertainty for building energy model calibration. Build. Simul. 6, 365–377 (2013)

    Article  Google Scholar 

  21. Fabrizio, E., Monetti, V.: Methodologies and advancements in the calibration of building energy models. Energies 8, 2548–2574 (2015)

    Article  Google Scholar 

  22. Coakley, D., Raftery, P., Keane, M.: A review of methods to match building energy simulation models to measured data. Renew. Sustain. Energy Rev. 37, 123–141 (2014)

    Article  Google Scholar 

  23. Grandjacques, M., Janon, A., Adrot, O., Delinchant, B.: Pick-freeze estimation of sensitivity indices for models with dependent causal processes inputs. MCQMC, KU Leuven, Belgium (2014)

    Google Scholar 

  24. Dang, H.A., Delinchant, B., Wurtz, F.: Toward building energy management: electric analog modeling for thermal behavior simulation. In: IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, pp. 246–250 (2016)

    Google Scholar 

  25. Nguyen Hong, Q., Le-Mounier, A., Dinh, V.B., Delinchant, B., Ploix, S., Wurtz, F.: Meta-Optimization and Scattering Parameters Analysis for Improving On Site Building Model Identification for Optimal Operation. IBPSA, Berkeley (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Binh Dinh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dinh, VB., Delinchant, B., Wurtz, F., Dang, HA. (2018). Building Modelling Methodology Combined to Robust Identification for the Temperature Prediction of a Thermal Zone in a Multi-zone Building. In: Huynh, VN., Inuiguchi, M., Tran, D., Denoeux, T. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2018. Lecture Notes in Computer Science(), vol 10758. Springer, Cham. https://doi.org/10.1007/978-3-319-75429-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75429-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75428-4

  • Online ISBN: 978-3-319-75429-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics