Skip to main content

Fokker–Planck Equations in Hilbert Spaces

  • Conference paper
  • First Online:
Stochastic Partial Differential Equations and Related Fields (SPDERF 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 229))

  • 1615 Accesses

Abstract

This paper includes in an unified way several results about existence and uniqueness of solutions of Fokker–Planck equations from (Bogachev et al., J Funct Anal, 256:1269–1298, 2009) [2], (Bogachev et al., J Evol Equ, 10(3):487–509, 2010) [3], (Bogachev et al., Partial Differ Equ, 36:925–939, 2011) [4] and (Bogachev et al., Bull London Math Soc 39:631–640, 2007) [1], using probabilistic methods. Several applications are provided including Burgers and 2D-Navier–Stokes equations perturbed by noise. Some of these applications were also studied by a different analytic approach in (Bogachev et al., J Differ Equ, 259(8):3854–3873, 2015) [5], (Bogachev et al., Ann Sc Norm Super Pisa Cl Sci 14(3):983–1023, 2015) [6], (Da Prato et al., Commun Math Stat, 1(3):281–304, 2013) [11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The upper index 1 in the definitions of \(S^{0,1}\) and \(\mathcal K^1_0\) recalls the space \(C_{b,1}(H)\).

  2. 2.

    \(\epsilon _0\) was defined in Hypothesis 1(ii).

  3. 3.

    \(\psi \) is defined in (21).

  4. 4.

    \(\mathbb Q\) denotes the set of rational numbers.

  5. 5.

    We take F independent of t for simplicity.

  6. 6.

    The aforementioned paper concerns Dirichlet boundary conditions but all its results generalise easily to periodic ones.

  7. 7.

    We proceed here as in Sect. 2 (with \(F_\alpha =0\)), but working in \(C_b(H)\) rather than in \(C_{1,b}(H)\).

References

  1. Bogachev, V., Da Prato, G., Röckner, M., Stannat, W.: Uniqueness of solutions to weak parabolic equations for measures. Bull. London Math. Soc. 39, 631–640 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bogachev, V., Da Prato, G., Röckner, M.: Fokker-Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces. J. Funct. Anal. 256, 1269–1298 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bogachev, V., Da Prato, G., Röckner, M.: Existence and uniqueness of solutions for Fokker-Planck equations on Hilbert spaces. J. Evol. Equ. 10(3), 487–509 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bogachev, V., Da Prato, G., Röckner, M.: Uniqueness for solutions of Fokker-Planck equations on infinite dimensional spaces. Commun. Partial Differ. Equ. 36, 925–939 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bogachev, V., Da Prato, G., Röckner, M., Shaposhnikov, S.: On the uniqueness of solutions to continuity equations. J. Differ. Equ. 259(8), 3854–3873 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bogachev, V., Da Prato, G., Röckner, M., Shaposhnikov, S.: An analytic approach to infinite-dimensional continuity and Fokker-Planck-Kolmogorov equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 14(3), 983–1023 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Cerrai, S.: A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49, 349–367 (1994)

    Article  MathSciNet  Google Scholar 

  8. Da Prato, G.: Kolmogorov Equations for Stochastic PDEs. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  9. Da Prato, G., Tubaro, L.: Some results about dissipativity of Kolmogorov operators. Czechoslov. Math. J. 51(126), 685–699 (2001)

    Google Scholar 

  10. Da Prato, G., Debussche, A.: \(m\)-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise. Potential Anal 26, 31–55 (2007)

    Article  MathSciNet  Google Scholar 

  11. Da Prato, G., Flandoli, F., Röckner, M.: Fokker-Planck equations for SPDE with non-trace class noise. Commun. Math. Stat. 1(3), 281–304 (2013)

    Article  MathSciNet  Google Scholar 

  12. Eberle, A.: Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators. Lecture Notes in Mathematics, vol. 1718. Springer, Berlin (1999)

    MATH  Google Scholar 

  13. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext. Springer, Berlin (2015)

    Book  Google Scholar 

  14. Priola, E.: On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions. Studia Math. 136, 271–295 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Da Prato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Da Prato, G. (2018). Fokker–Planck Equations in Hilbert Spaces. In: Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-74929-7_5

Download citation

Publish with us

Policies and ethics