Skip to main content

Chemotherapy-Related Cardiovascular Complications

  • Living reference work entry
  • First Online:
Oncologic Critical Care

Abstract

This book chapter addresses chemotherapy-related cardiovascular complications that may result in admission of oncology patients to the intensive care. It is covered in a systematic way from etiology, epidemiology, pathophysiology, and clinical features to diagnosis, management, and prognosis. Because many oncology patients undergo concomitant chemotherapy and radiotherapy which may have additive cardiovascular toxicity, the term cancer therapeutics is increasingly being used to encompass these exposures. There has been an exponential rate of growth in the development of new cancer therapeutics, often with more complex mechanism of actions. There is an increasing recognition of a myriad of secondary acute cardiovascular complications, some of which may be quite rare and therefore not identified or reported until the therapy is already approved and administered to the larger general population. Oncology patients may find themselves admitted to the intensive care because of a cardiac diagnosis that is independent of, partly related to, or directly as a consequence of their prior or current cancer therapy. It is imperative therefore for the patient/their healthcare power of attorney and the treating healthcare professional to be aware of such a potential etiology, to report this as part of thorough history taking, and to explore the potential relationship between the therapy and the illness. This is because the pathophysiology, clinical features, diagnosis, and prognosis can all be strikingly different depending on whether the cancer therapy is implicated in the etiology. Similarly, it can influence whether a cancer therapy is contraindicated for that patient in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. US Department of Health and Human Services, N.I.o.H., National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. 2017.

    Google Scholar 

  2. Taccone FS, et al. Characteristics and outcomes of cancer patients in European ICUs. Crit Care. 2009;13(1):R15.

    PubMed  PubMed Central  Google Scholar 

  3. Polk A, et al. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39(8):974–84.

    CAS  PubMed  Google Scholar 

  4. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67.

    CAS  PubMed  Google Scholar 

  5. Karabay KO, Yildiz O, Aytekin V. Multiple coronary thrombi with cisplatin. J Invasive Cardiol. 2014;26(2):E18–20.

    PubMed  Google Scholar 

  6. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.

    CAS  PubMed  Google Scholar 

  7. Sharalaya Z. Collier P. Prevention of cardiotoxicities with traditional and novel chemotherapeutic agents. Curr Heart Fail Rep. 2018;15(4):260–269.

    Google Scholar 

  8. Hidalgo S, Albright CA, Wells GL. A case of trastuzumab-associated cardiomyopathy presenting as an acute coronary syndrome: acute trastuzumab cardiotoxicity. Case Rep Cardiol. 2013;2013:473979.

    PubMed  PubMed Central  Google Scholar 

  9. Hamirani Y, et al. Anthracycline- and trastuzumab-induced cardiotoxicity: a retrospective study. Med Oncol. 2016;33(7):82.

    PubMed  PubMed Central  Google Scholar 

  10. Donnellan E, et al. Radiation-induced heart disease: a practical guide to diagnosis and management. Cleve Clin J Med. 2016;83(12):914–22.

    PubMed  Google Scholar 

  11. Alam S, et al. Gemcitabine-induced cardiotoxicity in patients receiving adjuvant chemotherapy for pancreatic cancer: a case series. Case Rep Oncol. 2018;11(1):221–7.

    PubMed  PubMed Central  Google Scholar 

  12. Alexandre J, et al. Anticancer drug-induced cardiac rhythm disorders: current knowledge and basic underlying mechanisms. Pharmacol Ther. 2018;189:89–103.

    CAS  PubMed  Google Scholar 

  13. Wiczer TE, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib. Blood Adv. 2017;1(20):1739–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lampson BL, et al. Ventricular arrhythmias and sudden death in patients taking ibrutinib. Blood. 2017;129(18):2581–4.

    CAS  PubMed  Google Scholar 

  15. Pallazola VA, et al. Anthracycline-induced acute myocarditis and ventricular fibrillation arrest. Am J Hematol. 2018;93(3):469–70.

    PubMed  Google Scholar 

  16. Johnson DB, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.

    PubMed  PubMed Central  Google Scholar 

  17. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahmood SS, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoshikawa T. Takotsubo cardiomyopathy, a new concept of cardiomyopathy: clinical features and pathophysiology. Int J Cardiol. 2015;182:297–303.

    PubMed  Google Scholar 

  20. Gopalakrishnan M, et al. Predictors of short- and long-term outcomes of Takotsubo cardiomyopathy. Am J Cardiol. 2015;116(10):1586–90.

    PubMed  Google Scholar 

  21. Coen M, et al. Chemotherapy-induced Takotsubo cardiomyopathy, a case report and review of the literature. BMC Cancer. 2017;17(1):394.

    PubMed  PubMed Central  Google Scholar 

  22. Sundaravel S, et al. FOLFOX induced Takotsubo cardiomyopathy treated with impella assist device. Case Rep Cardiol. 2017;2017:8507096.

    PubMed  PubMed Central  Google Scholar 

  23. Touyz RM, Herrmann J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precis Oncol. 2018;2:13.

    PubMed  PubMed Central  Google Scholar 

  24. Oshima Y, et al. Association between aortic dissection and systemic exposure of vascular endothelial growth factor pathway inhibitors in the Japanese adverse drug event report database. Circulation. 2017;135(8):815–7.

    PubMed  Google Scholar 

  25. Agrawal V, Christenson ES, Showel MM. Tyrosine kinase inhibitor induced isolated pericardial effusion. Case Rep Oncol. 2015;8(1):88–93.

    PubMed  PubMed Central  Google Scholar 

  26. de Lavallade H, et al. Pleural effusions in patients with chronic myeloid leukaemia treated with dasatinib may have an immune-mediated pathogenesis. Br J Haematol. 2008;141(5):745–7.

    PubMed  Google Scholar 

  27. Al-Hawwas M, et al. Acute coronary syndrome management in cancer patients. Curr Oncol Rep. 2018;20(10):78.

    PubMed  Google Scholar 

  28. Meyer CC, et al. Symptomatic cardiotoxicity associated with 5-fluorouracil. Pharmacotherapy. 1997;17(4):729–36.

    CAS  PubMed  Google Scholar 

  29. Von Hoff DD, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.

    Google Scholar 

  30. Doroshow JH. Doxorubicin-induced cardiac toxicity. N Engl J Med. 1991;324(12):843–5.

    CAS  PubMed  Google Scholar 

  31. Chatterjee K, et al. Doxorubicin cardiomyopathy. Cardiology. 2010;115(2):155–62.

    CAS  PubMed  Google Scholar 

  32. Lefrak EA, et al. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32(2):302–14.

    CAS  PubMed  Google Scholar 

  33. Desai MY, et al. Radiation-associated cardiac disease: a practical approach to diagnosis and management. JACC Cardiovasc Imaging. 2018;11(8):1132–49.

    PubMed  Google Scholar 

  34. Zang J, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS One. 2012;7(2):e30353.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chu TF, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rini BI, et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011;103(9):763–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. De Botton S, et al. Incidence, clinical features, and outcome of all trans-retinoic acid syndrome in 413 cases of newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood. 1998;92(8):2712–8.

    PubMed  Google Scholar 

  38. Larrea L, et al. Cardiac tamponade and cardiogenic shock as a manifestation of all-trans retinoic acid syndrome: an association not previously reported. Haematologica. 1997;82(4):463–4.

    CAS  PubMed  Google Scholar 

  39. Polk A, et al. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol. 2014;15:47.

    PubMed  PubMed Central  Google Scholar 

  40. Zhang S, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–42.

    PubMed  Google Scholar 

  41. Tan TC, et al. Anthracycline-induced cardiomyopathy in adults. Compr Physiol. 2015;5(3):1517–40.

    PubMed  Google Scholar 

  42. Ferreira de Souza T, et al. Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease. JACC Cardiovasc Imaging. 2018;11(8):1045–55.

    PubMed  Google Scholar 

  43. Telli ML, et al. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J Clin Oncol. 2007;25(23):3525–33.

    CAS  PubMed  Google Scholar 

  44. Sengupta PP, et al. Trastuzumab-induced cardiotoxicity: heart failure at the crossroads. Mayo Clin Proc. 2008;83(2):197–203.

    CAS  PubMed  Google Scholar 

  45. de Korte MA, et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43(14):2046–51.

    PubMed  Google Scholar 

  46. Fedele C, et al. Mechanisms of cardiotoxicity associated with ErbB2 inhibitors. Breast Cancer Res Treat. 2012;134(2):595–602.

    CAS  PubMed  Google Scholar 

  47. Honigberg LA, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 2010;107(29):13075–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang C, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014;2(9):846–56.

    CAS  PubMed  Google Scholar 

  49. Reuben A, Petaccia de Macedo M, McQuade J, Joon A, Ren Z, Calderone T, Conner B, Wani K, Cooper ZA, Tawbi H, Tetzlaff MT, Padera RF, Durand JB, Laza AJ, Wargo JA, Davies MA. Comparative immune analysis of autoimmune myocarditis from ipilimumab. Oncoimmunology. 2017;6:e1361097.

    PubMed  PubMed Central  Google Scholar 

  50. Laubli H, et al. Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma. J Immunother Cancer. 2015;3:11.

    PubMed  PubMed Central  Google Scholar 

  51. Carver JR, et al. Myocarditis during lenalidomide therapy. Ann Pharmacother. 2010;44(11):1840–3.

    PubMed  Google Scholar 

  52. Komamura K, et al. Takotsubo cardiomyopathy: pathophysiology, diagnosis and treatment. World J Cardiol. 2014;6(7):602–9.

    PubMed  PubMed Central  Google Scholar 

  53. Boland TA, Lee VH, Bleck TP. Stress-induced cardiomyopathy. Crit Care Med. 2015;43(3):686–93.

    CAS  PubMed  Google Scholar 

  54. Yusuf SW, et al. Treatment and outcomes of acute coronary syndrome in the cancer population. Clin Cardiol. 2012;35(7):443–50.

    PubMed  Google Scholar 

  55. Sulpher J, et al. Acute cardiogenic shock induced by infusional 5-fluorouracil. Case Rep Oncol Med. 2014;2014:819396.

    PubMed  PubMed Central  Google Scholar 

  56. Mant J, et al. Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care. Health Technol Assess. 2009;13(32):1–207.. iii

    CAS  PubMed  Google Scholar 

  57. Caforio AL, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(33):2636–48.. 2648a–2648d

    PubMed  Google Scholar 

  58. Templin C, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373(10):929–38.

    CAS  PubMed  Google Scholar 

  59. Thygesen K, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018;72(18):2231–64.

    PubMed  Google Scholar 

  60. Reichlin T, et al. Introduction of high-sensitivity troponin assays: impact on myocardial infarction incidence and prognosis. Am J Med. 2012;125(12):1205–1213 e1.

    CAS  PubMed  Google Scholar 

  61. Ganatra S, Sharma A, Levy MS. Re-evaluating the safety of drug-eluting stents in cancer patients. JACC Cardiovasc Interv. 2017;10(22):2334–7.

    PubMed  Google Scholar 

  62. Yancy CW, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–61.

    PubMed  Google Scholar 

  63. Shah SR, Park K. Long QT syndrome: a comprehensive review of the literature and current evidence. Curr Probl Cardiol. 2019;44(3):92–106.

    PubMed  Google Scholar 

  64. Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf. 2013;36(5):295–316.

    CAS  PubMed  Google Scholar 

  65. Duan J, et al. Anticancer drugs-related QTc prolongation, torsade de pointes and sudden death: current evidence and future research perspectives. Oncotarget. 2018;9(39):25738–49.

    PubMed  PubMed Central  Google Scholar 

  66. Jones DW, Hall JE. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure and evidence from new hypertension trials. Hypertension. 2004;43(1):1–3.

    CAS  PubMed  Google Scholar 

  67. Peigne V, et al. Continued survival gains in recent years among critically ill myeloma patients. Intensive Care Med. 2009;35(3):512–8.

    PubMed  Google Scholar 

  68. Velders MA, et al. Outcome after ST elevation myocardial infarction in patients with cancer treated with primary percutaneous coronary intervention. Am J Cardiol. 2013;112(12):1867–72.

    PubMed  Google Scholar 

  69. Jensen SA, Sorensen JB. Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother Pharmacol. 2006;58(4):487–93.

    CAS  PubMed  Google Scholar 

  70. Guddati AK, Joy PS, Kumar G. Analysis of outcomes of percutaneous coronary intervention in metastatic cancer patients with acute coronary syndrome over a 10-year period. J Cancer Res Clin Oncol. 2016;142(2):471–9.

    PubMed  Google Scholar 

  71. Azoulay E, et al. Intensive care of the cancer patient: recent achievements and remaining challenges. Ann Intensive Care. 2011;1(1):5.

    PubMed  PubMed Central  Google Scholar 

  72. Darmon M, Azoulay E. Critical care management of cancer patients: cause for optimism and need for objectivity. Curr Opin Oncol. 2009;21(4):318–26.

    PubMed  Google Scholar 

  73. Sabik JF, et al. Long-term effectiveness of operations for ascending aortic dissections. J Thorac Cardiovasc Surg. 2000;119(5):946–62.

    CAS  PubMed  Google Scholar 

  74. Vaughan CJ, Delanty N. Hypertensive emergencies. Lancet. 2000;356(9227):411–7.

    CAS  PubMed  Google Scholar 

  75. Dequanter D, et al. Severe pericardial effusion in patients with concurrent malignancy: a retrospective analysis of prognostic factors influencing survival. Ann Surg Oncol. 2008;15(11):3268–71.

    CAS  PubMed  Google Scholar 

  76. Li BT, et al. Malignant cardiac tamponade from non-small cell lung cancer: case series from the era of molecular targeted therapy. J Clin Med. 2014;4(1):75–84.

    PubMed  PubMed Central  Google Scholar 

  77. Herrmann J, et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014;89(9):1287–306.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Collier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hussain, M., Collier, P. (2019). Chemotherapy-Related Cardiovascular Complications. In: Nates, J., Price, K. (eds) Oncologic Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-74698-2_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74698-2_70-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74698-2

  • Online ISBN: 978-3-319-74698-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics