Skip to main content

Broadband Energy Harvesting Performance of a Piezoelectrically Generated Bistable Laminate

  • Conference paper
  • First Online:
Book cover Sensors and Instrumentation, Aircraft/Aerospace and Energy Harvesting , Volume 8

Abstract

The vibration based energy harvesting performance of a piezoelectrically generated bistable laminate consisting of only Macro Fiber Composites (MFC) is experimentally characterized. Conventionally, piezoelectric transducers are bonded onto thermally induced bistable composite laminates and exhibit broadband cross-well dynamics that are exploited for improved power generation over linear resonant harvesters. Recently, a novel method of inducing bistability was proposed by bonding two actuated MFCs in a [0MFC∕90MFC] T layup and releasing the voltage post cure to create in-plane residual stresses and yield two cylindrically stable configurations. Forward and backward frequency sweeps at multiple acceleration levels across the first two observed modes of the laminate’s two states are performed to identify all dynamic regimes and the corresponding voltages produced by each MFC. Besides single-well oscillations, snap throughs are observed in intermittencies, subharmonic, chaotic, and limit cycle oscillations across wide frequency ranges. Resistor sweeps are conducted for each regime to determine maximum power outputs, and single and multi-frequency performance metrics accounting for laminate volume, mass, input accelerations, and frequencies are evaluated for the laminate. A performance comparison with conventional bistable composite harvesters demonstrate the laminate’s viability for energy harvesting, allowing it to be multi-functional in combination with its snap through morphing capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Article  Google Scholar 

  2. Emam, S.A., Inman, D.J.: A review on bistable composite laminates for morphing and energy harvesting. Appl. Mech. Rev. 67(6), 060803 (2015)

    Article  Google Scholar 

  3. Hu, N., Burgueño, R.: Buckling-induced smart applications: recent advances and trends. Smart Mater. Struct. 24(6), 063001 (2015)

    Article  Google Scholar 

  4. Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24(11), 1303–1312 (2012)

    Article  Google Scholar 

  5. Tang, L., Yang, Y., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21(18), 1867–1897 (2010)

    Article  Google Scholar 

  6. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 941(10), 254102–254103 (2009)

    Article  Google Scholar 

  7. Erturk, A., Inman, D.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)

    Article  Google Scholar 

  8. Tang, L., Yang, Y., Soh, C.K.: Improving functionality of vibration energy harvesters using magnets. J. Intell. Mater. Syst. Struct. 23(13), 1433–1449 (2012)

    Article  Google Scholar 

  9. Lin, J.T., Alphenaar, B.: Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever. J. Intell. Mater. Syst. Struct. 21(13), 1337–1341 (2010)

    Article  Google Scholar 

  10. Karami, M.A., Farmer, J.R., Inman, D.J.: Parametrically excited nonlinear piezoelectric compact wind turbine. Renew. Energy 50, 977–987 (2013)

    Article  Google Scholar 

  11. Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., Ferrari, V.: Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct. 21(3), 035021 (2012)

    Article  Google Scholar 

  12. Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133(1), 011007 (2011)

    Article  Google Scholar 

  13. Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97(10), 104102 (2010)

    Article  Google Scholar 

  14. Arrieta, A.F., Delpero, T., Bergamini, A.E., Ermanni, P.: Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites. Appl. Phys. Lett. 102(17), 173904 (2013)

    Article  Google Scholar 

  15. Betts, D., Bowen, C., Kim, H., Gathercole, N., Clarke, C., Inman, D.: Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application. Eur. Phys. J. Spec. Top. 222(7), 1553–1562 (2013)

    Article  Google Scholar 

  16. Betts, D.N., Guyer, R.A., Le Bas, P.Y., Bowen, C.R., Inman, D., Kim, H.A.: Modelling the dynamic response of bistable composite plates for piezoelectric energy harvesting. In: 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2014)

    Google Scholar 

  17. Betts, D.N., Bowen, C.R., Inman, D.J., Weaver, P.M., Kim, H.A.: Investigation of geometries of bistable piezoelectric-laminate plates for vibration-based energy harvesting. In: SPIE Active and Passive Smart Structures and Integrated Systems (2014)

    Google Scholar 

  18. Li, H., Dai, F., Du, S.: Broadband energy harvesting by exploiting nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate. Smart Mater. Struct. 24(4), 045024 (2015)

    Article  Google Scholar 

  19. Harris, P., Skinner, W., Bowen, C.R., Kim, H.A.: Manufacture and characterisation of piezoelectric broadband energy harvesters based on asymmetric bistable cantilever laminates. Ferroelectrics 480, 67–76 (2015)

    Article  Google Scholar 

  20. Harris, P., Arafa, M., Litak, G., Bowen, C.R., Iwaniec, J.: Output response identification in a multistable system for piezoelectric energy harvesting. Eur. Phys. J. B 90, 1–11 (2017)

    Google Scholar 

  21. Pan, D., Ma, B., Dai, F.: Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate. Smart Mater. Struct. 26(3), 035045 (2017)

    Article  Google Scholar 

  22. Udani, J.P., Wrigley, C., Arrieta, A.F.: Performance metric comparison study for non-magnetic bi-stable energy harvesters. In: SPIE Active and Passive Smart Structures and Integrated Systems (2017)

    Google Scholar 

  23. Lee, A.J., Moosavian, A., Inman, D.J.: A piezoelectrically generated bistable laminate for morphing. Mater. Lett. 190, 123–126 (2017)

    Article  Google Scholar 

  24. Lee, A.J., Moosavian, A., Inman, D.J.: Control and characterization of a bistable laminate generated with piezoelectricity. Smart Mater. Struct. 26, 085007 (2017)

    Article  Google Scholar 

  25. Hyer, M.W.: Some observations on the cured shape of thin unsymmetric laminates. J. Compos. Mater. 15(2), 175–194 (1981)

    Article  Google Scholar 

  26. Betts, D.N., Kim, H.A., Bowen, C.R., Inman, D.J.: Optimal configurations of bistable piezo-composites for energy harvesting. Appl. Phys. Lett. 100(95), 114104–114117 (2012)

    Article  Google Scholar 

  27. Sodano, H.A.: An experimental comparison between several active composite actuators for power generation. Smart Mater. Struct. 15, 1211–1216 (2006)

    Article  Google Scholar 

  28. Choi, Y.T., Wereley, N.M., Purekar, A.S.: Energy harvesting devices using macro-fiber composite materials. J. Intell. Mater. Syst. Struct. 21(6), 647–658 (2010)

    Article  Google Scholar 

  29. Beeby, S.P., Torah, R.N., Tudor, M.J., Glynne-Jones, P., O’Donnell, T., Saha, C.R., Roy, S.: A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17(7), 1257–1265 (2007)

    Article  Google Scholar 

  30. Gigliotti, M., Wisnom, M.R., Potter, K.D.: Loss of bifurcation and multiple shapes of thin [0/90] unsymmetric composite plates subject to thermal stress. Compos. Sci. Tech. 64(1), 109–128 (2004)

    Article  Google Scholar 

  31. Moon, F.C.: Chaotic and Fractal Dynamics: an Introduction for Applied Scientists and Engineers. Wiley, New York (1992)

    Book  Google Scholar 

  32. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Cambridge (1994)

    MATH  Google Scholar 

  33. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  MathSciNet  Google Scholar 

  34. Virgin, L.N.: Introduction to experimental nonlinear dynamics: a case study in mechanical vibration. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Air Force Office of Scientific Research (AFOSR) under grant number FA9550-16-1-0087, titled “Avian-Inspired Multifunctional Morphing Vehicles” monitored by Dr. B.L. Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, A.J., Inman, D.J. (2019). Broadband Energy Harvesting Performance of a Piezoelectrically Generated Bistable Laminate. In: Wee Sit, E., Walber, C., Walter, P., Wicks, A., Seidlitz, S. (eds) Sensors and Instrumentation, Aircraft/Aerospace and Energy Harvesting , Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-74642-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74642-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74641-8

  • Online ISBN: 978-3-319-74642-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics