Skip to main content

Dynamical Features of a Biochemical Interaction in a Plant Root Hair Cell

A Long Story Short

  • Chapter
  • First Online:
Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues
  • 544 Accesses

Abstract

In this chapter, we briefly discuss key dynamical features of a generalised Schnakenberg model. This model sheds light on the morphogenesis of plant root hair initiation process. Our discussion is focused on the plant called Arabidopsis thaliana, which is a prime plant-model for plant researchers as is experimentally well known. Here, relationships between physical attributes and biochemical interactions that occur at a sub-cellular level are revealed. The model consists of a two-component non-homogeneous reaction-diffusion system, which takes into account an on-and-off switching process of small G-protein family members called Rho-of-Plants (ROPs). This interaction however is catalysed by the plant hormone auxin, which is known to play a crucial role in many morphogenetic processes in plants. Upon applying semi-strong theory and performing numerical bifurcation analysis, all together with time-step simulations, we present results from a thorough analysis of the dynamics of spatially localised structures in 1D and 2D spatial domains. These compelling dynamical features are found to give place to a wide variety of patterns. Key features of the full analysis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J (2014) Root hairs: the Arabidopsis book 11. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  2. Berger F, Hung C, Dolan L, Schiefelbein J (1998) Control of cell division in the root epidermis of Arabidopsis thaliana. Dev Biol 194:235–245

    Article  CAS  PubMed  Google Scholar 

  3. Jones A, Kramer E, Knox K, Swarup R, Bennett M, Lazary C, Leyser HO, Grierson C (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84

    Article  CAS  PubMed  Google Scholar 

  4. Nagawa S, Xu T, Yang Z (2010) Rho GTPases in plants: conservation and invention of regulators and effectors. Small GTPases 1:78–88

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bustelo X, Sauzeau V, Berenjeno I (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29:356–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jüngens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  CAS  PubMed  Google Scholar 

  7. Mori Y, Jilkine A, Edelstein-Keschet L (2008) Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys J 94:3684–3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Breña-Medina VF (2013) Modelling initiation of plant root hairs; a reaction-diffusion system in a non-homogenous environment. PhD thesis, University of Bristol

    Google Scholar 

  9. Payne R, Grierson C (2009) A theoretical model for ROP localisation by auxin in Arabidopsis root hair cells. PLoS One 4:e8337. https://doi.org/10.1371/journal.pone.0008337

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kramer EM, Rutschow HL, Mabie SS (2011) AuxV: a database of auxin transport velocities. Trends Plant Sci 16:461–463

    Article  CAS  PubMed  Google Scholar 

  11. Kramer EM (2004) PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci 9:578–582

    Article  CAS  PubMed  Google Scholar 

  12. Grierson C et al (2009) Root Development Lab, School of Biological Sciences – University of Bristol

    Google Scholar 

  13. Sorek N, Gutman O, Bar E, Abu-Abied M, Feng X, Running M, Lewinsohn E, Ori N, Sadot E, Henis Y, Yalovsky S (2011) Differential effects of prenylation and S-acylation on type I and II ROPs membrane interaction and function. Plant Physiol 155:706–720

    Article  CAS  PubMed  Google Scholar 

  14. Jilkine A, Maree A, Edelstein-Keschet L (2007) Mathematical model for spatial segregation of the Rho-family GTPases based on inhibitory crosstalk. Bull Math Biol 69:1943–1978

    Article  PubMed  Google Scholar 

  15. Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A (2007) A mass conserved reaction-diffusion system captures properties of cell polarity. PLoS Comput Biol 3:e108

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behaviour. J Theor Biol 81:389–400

    Article  CAS  PubMed  Google Scholar 

  17. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley-Interscience, New York

    Google Scholar 

  18. Maini PK, Painter KJ, Phong-Chau HN (1997) Spatial pattern formation in chemical and biological systems. J Chem Soc Faraday Trans 93:3601–3610

    Article  CAS  Google Scholar 

  19. Ward MJ, Wei J (2002) The existence and stability of asymmetric spike patterns for the Schnakenberg model. Stud Appl Math 109:229–264

    Article  Google Scholar 

  20. Iron D, Wei J, Winter M (2004) Stability analysis of Turing patterns generated by the Schnakenberg model. J Math Biol 49:358–390

    Article  PubMed  Google Scholar 

  21. Kolokolnikov T, Ward M, Wei J (2009) Spot self-replication and dynamics for the Schnakenberg model in a two-dimensional domain. J Nonlinear Sci 19:1–56

    Article  Google Scholar 

  22. Dufiet V, Boissonade J (1992) Conventional and unconventional Turing patterns. J Chem Phys 96:662–673

    Article  Google Scholar 

  23. Lin F, Du Q (1997) Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J Math Anal 28:1265–1293

    Article  Google Scholar 

  24. Ward M, Mcinerney D, Houston P, Gavaghan D, Maini P (2002) The dynamics and pinning of a spike for a reaction-diffusion system. SIAM J Appl Math 62:1297–1328

    Article  Google Scholar 

  25. Maini PK, Benson DL, Sherrat JA (1992) Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients. IMA J Math Appl Med Biol 9:197–213

    Article  Google Scholar 

  26. Holloway DM, Harrison LG (1995) Order and localization in reaction-diffusion pattern. Phys A Stat Mech Appl 222:210–233

    Article  CAS  Google Scholar 

  27. Hunding A (1985) Morphogen prepatterns during mitosis and cytokinesis in flattened cells: three dimensional Turing structures of reaction-diffusion systems in cylindrical coordinates. J Theor Biol 114:571–588

    Article  CAS  PubMed  Google Scholar 

  28. Breña-Medina V, Champneys AR (2014) Subcritical Turing bifurcation and the morphogenesis of localized structures. Phys Rev E 90:032923

    Article  Google Scholar 

  29. Breña-Medina V, Champneys AR, Grierson C, Ward MJ (2014) Mathematical modelling of plant root hair initiation; dynamics of localized patches. SIAM J Appl Dyn Syst 13:210–248

    Article  Google Scholar 

  30. Breña-Medina V, Avitabile D, Champneys A, Ward M (2015) Stripe to spot transition in a plant root hair initiation model. SIAM J Appl Math 75:1090–1119

    Article  Google Scholar 

  31. Avitabile D, Breña-Medina V, Ward MJ (2017) Spot dynamics in a reaction-diffusion model of plant root hair initiation. arXiv:1703.02608 and bioRxiv:114876

    Google Scholar 

  32. Murray J (2002) Mathematical biology II: spatial models and biomedical applications, 3rd edn. Springer, New York

    Google Scholar 

  33. Beck M, Knobloch J, Lloyd DJB, Sandstede B, Wagenknecht T (2009) Snakes, Ladders, and Isolas of localized patterns. SIAM J Math Anal 41:936–972

    Article  Google Scholar 

  34. Woods PD, Champneys AR (1999) Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation. Physica D 129:147–170

    Article  Google Scholar 

  35. Avitabile D, Lloyd D, Burke J, Knobloch E, Sandstede B (2010) To snake or not to snake in the planar Swift-Hohenberg equation. SIAM J Appl Dyn Syst 9:704–733

    Article  Google Scholar 

  36. Grieneisen V, Maree A, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013

    Article  CAS  PubMed  Google Scholar 

  37. Doelman A, van der Ploeg H (2002) Homoclinic stripe patterns. SIAM J Appl Dyn Syst 1: 65–104

    Article  Google Scholar 

Download references

Acknowledgements

I specially thank D. Avitabile, A. Champneys, C. Grierson and M. Ward who have travelled along my side on this dynamical journey. Also, my thanks to the organisers of the Biological Physics Mexico City 2017 Conference for the well-organised meeting. This research has partially been supported by UNAM–PAPIIT grant IA104316–RA104316 (Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor F. Breña-Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Breña-Medina, V.F. (2018). Dynamical Features of a Biochemical Interaction in a Plant Root Hair Cell. In: Olivares-Quiroz, L., Resendis-Antonio, O. (eds) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Springer, Cham. https://doi.org/10.1007/978-3-319-73975-5_10

Download citation

Publish with us

Policies and ethics