Skip to main content

Antibiotic Resistances of Clostridium difficile

  • Chapter
  • First Online:
Book cover Updates on Clostridium difficile in Europe

Abstract

The rapid evolution of antibiotic resistance in Clostridium difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances and most of epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways and biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, recent data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann G, Tang YJ, Kueper R et al (2001) Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyr A. Antimicrob Agents Chemother 45:2348–2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackermann G, Tang-Feldman YJ, Schaumann R et al (2003) Antecedent use of fluoroquinolones is associated with resistance to moxifloxacin in Clostridium difficile. Clin Microbiol Infect 9:526–530

    Article  CAS  PubMed  Google Scholar 

  • Adler A, Miller-Roll T, Bradenstein R, Block C et al (2015) A national survey of the molecular epidemiology of Clostridium difficile in Israel: the dissemination of the ribotype 027 strain with reduced susceptibility to vancomycin and metronidazole. Diagn Microbiol Infect Dis 83:21–24

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Harmanus C et al (2017) Subtyping and antimicrobial susceptibility of Clostridium difficile PCR ribotype 078/126 isolates of human and animal origin. Vet Microbiol 199:15–22

    Article  CAS  PubMed  Google Scholar 

  • Ambrose NS, Johnson M, Burdon D et al (1985) The influence of single dose intravenous antibiotics on faecal flora and emergence of Clostridium difficile. J Antimicrob Chemother 15:319–326

    Article  CAS  PubMed  Google Scholar 

  • Ammam F, Marvaud JC, Lambert T (2012) Distribution of the vanG-like gene cluster in Clostridium difficile clinical isolates. Can J Microbiol 58:547–551

    Article  CAS  PubMed  Google Scholar 

  • Ammam F, Meziane-Cherif D, Mengin-Lecreulx D et al (2013) The functional vanGCd cluster of Clostridium difficile does not confer vancomycin resistance. Mol Microbiol 89:612–625

    Article  CAS  PubMed  Google Scholar 

  • Baines SD, O’Connor R, Freeman J et al (2008) Emergence of reduced susceptibility to metronidazole in Clostridium difficile. J Antimicrob Chemother 62:1046–1052

    Article  CAS  PubMed  Google Scholar 

  • Baldan R, Trovato A, Bianchini V et al (2015) A successful epidemic genotype: Clostridium difficile PCR ribotype 018. J Clin Microbiol 53:2575–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett JG, Onderdonk AB, Cisneros RL et al (1977) Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis 136:701–705

    Article  CAS  PubMed  Google Scholar 

  • Bauer MP, Notermans DW, van Benthem BHB et al (2011) Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377:63–73

    Article  PubMed  Google Scholar 

  • Bignardi GE (1998) Risk factors for Clostridium difficile infection. J Hosp Infect 40:1–15

    Article  CAS  PubMed  Google Scholar 

  • Bolton RP, Culshaw MA (1986) Faecal metronidazole concentrations during oral and intravenous therapy for antibiotic associated colitis due to Clostridium difficile. Gut 27:1169–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazier JS, Fawley W, Freeman J et al (2001) Reduced susceptibility of Clostridium difficile to metronidazole. J Antimicrob Chemother 48:741–742

    Article  CAS  PubMed  Google Scholar 

  • Brouwer MSM, Warburton PJ, Roberts AP et al (2011) Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile. PLoS One 6:e23014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouwer MSM, Roberts AP, Mullany P et al (2012) In silico analysis of sequenced strains of Clostridium difficile reveals a related set of conjugative transposons carrying a variety of accessory genes. Mob Genet Elem 2:8–12

    Article  Google Scholar 

  • Büchler AC, Rampini SK, Stelling S et al (2014) Antibiotic susceptibility of Clostridium difficile is similar worldwide over two decades despite widespread use of broad-spectrum antibiotics: an analysis done at the University Hospital of Zurich. BMC Infect Dis 14:607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burckhardt F, Friedrich A, Beier D et al (2008) Clostridium difficile surveillance trends, Saxony, Germany. Emerg Infect Dis 4:691–692

    Article  Google Scholar 

  • Cairns MD, Preston MD, Hall CL et al (2017) Comparative genome analysis and global phylogeny of the toxin variant Clostridium difficile PCR ribotype 017 reveals the evolution of two independent sublineages. J Clin Microbiol 55:865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candela T, Marvaud J-C, Nguyen TK et al (2017) A cfr-like Gene cfr(C) conferring linezolid resistance is common in Clostridium difficile. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2017.03.013

  • Carman RJ, Genheimer CW, Rafii F et al (2009) Diversity of moxifloxacin resistance during a nosocomial outbreak of a predominantly ribotype ARU 027 Clostridium difficile diarrhea. Anaerobe 15:244–248

    Article  CAS  PubMed  Google Scholar 

  • Carman RJ, Boone JH, Grover H et al (2012) In vivo selection of rifamycin-resistant Clostridium difficile during rifaximin therapy. Antimicrob Agents Chemother 56:6019–6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro-Rojas F, Mullane KM (2013) Emerging therapies for Clostridium difficile infection – focus on fidaxomicin. Infect Drug Resist 6:41–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chia JH, Lai HC, Su LH et al (2013) Molecular epidemiology of Clostridium difficile at a medical center in Taiwan: persistence of genetically clustering of A−B+ isolates and increase of A+B+ isolates. PLoS One 8:e75471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong PM, Lynch T, McCorrister S et al (2014) Proteomic analysis of a NAP1 Clostridium difficile clinical isolate resistant to metronidazole. PLoS One 9:e82622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clements AC, Magalhães RJ, Tatem AJ et al (2010) Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. Lancet Infect Dis 10:395–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2012) Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard-eighth edn. CLSI document M11-A8. ISBN 1-56238-789-8 (Print); ISBN 1-56238-790-1 (Electronic)

    Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2015) Performance standards for antimicrobial susceptibility testing. Twenty-fifth informational supplement. CLSI document M100-S25. ISBN 1-56238-989-0 (Print); ISBN 1-56238-990-4 (Electronic)

    Google Scholar 

  • Corver J, Bakker D, Brouwer MSM et al (2012) Analysis of a Clostridium difficile PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, Tn6164. BMC Microbiol 12:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curry SR, Marsh JW, Shutt KA et al (2009) High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin Infect Dis 48:425–429

    Article  CAS  PubMed  Google Scholar 

  • Dapa T, Leuzzi R, Ng YK et al (2013) Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 195:545–555

    Article  CAS  PubMed  Google Scholar 

  • Davies KA, Longshaw CM, Davis GL et al (2014) Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis 14:1208–1219

    Article  PubMed  Google Scholar 

  • de Lalla F, Privitera G, Ortisi G et al (1989) Third generation cephalosporins as a risk factor for Clostridium difficile-associated disease: a four-year survey in a general hospital. J Antimicrob Chemother 23:623–631

    Article  PubMed  Google Scholar 

  • Debast SB, Bauer MP, Kuijper EJ (2014) European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect 20:1–26

    Article  CAS  PubMed  Google Scholar 

  • Dingle KE, Elliott B, Robinson E et al (2014) Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol Evol 6:36–52

    Article  PubMed  Google Scholar 

  • Dong D, Zhang L, Chen X et al (2013) Antimicrobial susceptibility and resistance mechanisms of clinical Clostridium difficile from a Chinese tertiary hospital. Int J Antimicrob Agents 41:80–84

    Article  CAS  PubMed  Google Scholar 

  • Dong D, Chen X, Jiang C et al (2014) Genetic analysis of Tn916-like elements conferring tetracycline resistance in clinical isolates of Clostridium difficile. Int J of Antimicrob Agents 43:73–77

    Article  CAS  Google Scholar 

  • Dridi L, Tankovic J, Burghoffer B et al (2002) Gyr A and gyrB mutations are implicated in cross-resistance to ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother 46:3418–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drudy D, Quinn T, O’Mahony R et al (2006) High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive Clostridium difficile. J Antimicrob Chemother 58:1264–1267

    Article  CAS  PubMed  Google Scholar 

  • Drudy D, Kyne L, O’Mahony R et al (2007) gyrA mutations in fluoroquinolone-resistant Clostridium difficile PCR-027. Emerg Infect Dis 13:504–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubberke ER, Olsen MA (2012) Burden of Clostridium difficile on the healthcare system. Clin Infect Dis 55(suppl 2):S88–S92

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert C, Coignard B, Hebert M et al (2013) Clinical and microbiological features of Clostridium difficile infections in France: the ICD-RAISIN 2009 national survey. Méd Mal Infect 43:67–74

    Article  CAS  PubMed  Google Scholar 

  • Eitel Z, Terhes G, Sóki J et al (2015) Investigation of the MICs of fidaxomicin and other antibiotics against Hungarian Clostridium difficile isolates. Anaerobe 31:47–49

    Article  CAS  PubMed  Google Scholar 

  • Erikstrup LT, Danielsen TK, Hall V et al (2012) Antimicrobial susceptibility testing of Clostridium difficile using EUCAST epidemiological cut-off values and disk diffusion correlates. Clin Microbiol Infect 18:E266–E272

    Article  CAS  PubMed  Google Scholar 

  • European Centre for Disease Prevention and Control (ECDC) (2013) Point prevalence survey of health care associated infections and antimicrobial use in European acute care hospitals

    Google Scholar 

  • Falagas ME, Makris GC, Dimopoulos G et al (2008) Heteroresistance: a concern of increasing clinical significance? Clin Microbiol Infect 14:101–104

    Article  CAS  PubMed  Google Scholar 

  • Farrow KA, Lyras D, Rood JI (2001) Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology 147:2717–2728

    Article  CAS  PubMed  Google Scholar 

  • Fraga EG, Nicodemo AC, Sampaio JL (2016) Antimicrobial susceptibility of Brazilian Clostridium difficile strains determined by agar dilution and disk. Braz J Infect Dis 20:476–481

    Article  PubMed  Google Scholar 

  • Freeman J, Stott J, Baines SD et al (2005) Surveillance for resistance to metronidazole and vancomycin in genotypically distinct and UK epidemic Clostridium difficile isolates in a large teaching hospital. J Antimicrob Chemother 56:988–989

    Article  CAS  PubMed  Google Scholar 

  • Freeman J, Vernon J, Morris K et al (2015a) Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect 21:248.e9–248.e16

    Article  CAS  Google Scholar 

  • Freeman J, Vernon J, Vickers R et al (2015b) Susceptibility of Clostridium difficile isolates of varying antimicrobial resistance phenotypes to SMT19969 and 11 comparators. Antimicrob Agents Chemother 60:689–692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fry PR, Thakur S, Abley M et al (2012) Antimicrobial resistance, toxinotype, and genotypic profiling of Clostridium difficile isolates of swine origin. J Clin Microbiol 50:2366–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gal M, Brazier JS (2004) Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother 54:109–116

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Wu S, Huang H, Ni Y et al (2016) Toxin profiles, PCR ribotypes and resistance patterns of Clostridium difficile: a multicentre study in China, 2012–2013. Int J Antimicrob Agents 48:736–739

    Article  CAS  PubMed  Google Scholar 

  • Genzel GH, Stubbings W, Stingu CS et al (2014) Activity of the investigational fluoroquinolone finafloxacin and seven other antimicrobial agents against 114 obligately anaerobic bacteria. Int J Antimicrob Agents 44:420–423

    Article  CAS  PubMed  Google Scholar 

  • Goh S, Hussain H, Chang BJ et al (2013) Phage ϕC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains. MBio 4:e00840–e00813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldman P (1982) The development of 5-nitroimidazoles for the treatment and prophylaxis of anaerobic bacterial infections. J Antimicrob Chemother 10(Suppl. A):23–33

    Article  CAS  PubMed  Google Scholar 

  • Goldstein EJ, Citron DM, Sears P et al (2011) Comparative susceptibilities of fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two fidaxomicin phase III trials of C. difficile infection. Antimicrob Agents Chemother 55:5194–5199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein EJ, Babakhani F, Citron DM (2012) Antimicrobial activities of fidaxomicin. Clin Infect Dis 55(Suppl. 2):S143–S148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goorhuis A, Van der Kooi T, Vaessen N et al (2007) Spread and epidemiology of Clostridium difficile polymerase chain reaction ribotype 027/toxinotype III in The Netherlands. Clin Infect Dis 45:695–703

    Article  CAS  PubMed  Google Scholar 

  • Goudarzi M, Goudarzi H, Alebouyeh M et al (2013) Antimicrobial susceptibility of Clostridium difficile clinical isolates in Iran. Iran Red Crescent Med J 15:704–711

    Article  PubMed  PubMed Central  Google Scholar 

  • Gravel D, Miller M, Simor A, Taylor G et al (2009) Canadian Nosocomial Infection Surveillance Program. Health care-associated Clostridium difficile infection in adults admitted to acute care hospitals in Canada: a Canadian Nosocomial Infection Surveillance Program study. Clin Infect Dis 48:568–576

    Article  PubMed  Google Scholar 

  • Hächler H, Berger-Bächi B, Kayser FH (1987) Genetic characterization of a Clostridium difficile erythromycin-clindamycin resistance determinant that is transferable to Staphylococcus aureus. Antimicrob Agents Chemother 7:1039–1045

    Article  Google Scholar 

  • Hansen LH, Vester B (2015) A cfr-like gene from Clostridium difficile confers multiple antibiotic resistance by the same mechanism as the cfr gene. Antimicrob Agents Chemother 59:5841–5843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastey CJ, Dale SE, Nary J et al (2017) Comparison of Clostridium difficile minimum inhibitory concentrations obtained using agar dilution vs broth microdilution methods. Anaerobe 44:73–77

    Article  CAS  PubMed  Google Scholar 

  • He M, Sebaihia M, Lawley TD et al (2010) Evolutionary dynamics of Clostridium difficile over short and long time scales. PNAS 107:7527–7532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Miyajima F, Roberts P, Ellison L et al (2013) Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45:109–113

    Article  CAS  PubMed  Google Scholar 

  • Holt HM, Danielsen TK, Justesen US (2015) Routine disc diffusion antimicrobial susceptibility testing of Clostridium difficile and association with PCR ribotype 027. Eur J Clin Microbiol Infect Dis 34:2243–2246

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Weintraub A, Fang H et al (2009) Antimicrobial resistance in Clostridium difficile. Int J Antimicrob Agents 34:516–522

    Article  CAS  PubMed  Google Scholar 

  • Huang JS, Jiang Z-D, Garey KW et al (2013) Use of rifamycin drugs and development of infection by rifamycin-resistant strains of Clostridium difficile. Antimicrob Agents Chemother 57:2690–2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Impallomeni M, Galletly NP, Wort J et al (1995) Increased risk of diarrhoea caused by Clostridium difficile in elderly patients receiving cefotaxime. BMJ 311:1345–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iv ECO, Iii ECO, Johnson DA (2014) Clinical update for the diagnosis and treatment of Clostridium difficile infection. World J Gastrointest Pharmacol Ther 5:1–26

    Article  PubMed Central  Google Scholar 

  • Jamal WY, Rotimi VO (2016) Surveillance of antibiotic resistance among hospital- and community-acquired toxigenic Clostridium difficile isolates over 5-year period in Kuwait. PLoS One 11:e0161411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jarrad AM, Karoli T, Blaskovich MAT et al (2015) Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem 58:5164–5185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasni AS, Mullany P, Hussain H et al (2010) Demonstration of conjugative transposon (Tn5397)-mediated horizontal gene transfer between Clostridium difficile and Enterococcus faecalis. Antimicrob Agents Chemother 54:4924–4926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson S, Schriever C, Patel U et al (2009) Rifaximin redux: treatment of recurrent Clostridium difficile infections with rifaximin immediately post-vancomycin treatment. Anaerobe 15:290–291

    Article  CAS  PubMed  Google Scholar 

  • Karlowsky JA, Zhanel GG, Hammond GW et al (2012) Multidrug-resistant North American pulsotype 2 Clostridium difficile was the predominant toxigenic hospital-acquired strain in the province of Manitoba, Canada, in 2006–2007. J Med Microbiol 61:693–700

    Article  CAS  PubMed  Google Scholar 

  • Khan R, Cheesbrough J (2003) Impact of changes in antibiotic policy on Clostridium difficile-associated diarrhoea (CDAD) over a five-year period in a district general hospital. J Hosp Infect 54:104–108

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kang JO, Pai H et al (2012) Association between PCR ribotypes and antimicrobial susceptibility among Clostridium difficile isolates from healthcare-associated infections in South Korea. Int J Antimicrob Agents 40:24–29

    Article  PubMed  CAS  Google Scholar 

  • Knight DR, Riley TV (2016) Clostridium difficile clade 5 in Australia: antimicrobial susceptibility profiling of PCR ribotypes of human and animal origin. J Antimicrob Chemother 71:2213–2217

    Article  CAS  PubMed  Google Scholar 

  • Knight DR, Giglio S, Huntington PG et al (2015) Surveillance for antimicrobial resistance in Australian isolates of Clostridium difficile, 2013–2014. J Antimicrob Chemother 70:2992–2999

    Article  CAS  PubMed  Google Scholar 

  • Kociolek LK, Gerding DN, Osmolski JR et al (2016) Differences in the molecular epidemiology and antibiotic susceptibility of Clostridium difficile isolates in pediatric and adult patients. Antimicrob Agents Chemother 60:4896–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzegaran S, Ganjifard M, Tanha AS (2016) Detection, ribotyping and antimicrobial resistance properties of Clostridium difficile strains isolated from the cases of diarrhea. Mater Sociomed 28:324–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Krutova M, Matejkova J, Tkadlec J et al (2015) Antibiotic profiling of Clostridium difficile ribotype 176 – a multidrug resistant relative to C. difficile ribotype 027. Anaerobe 36:88–90

    Article  CAS  PubMed  Google Scholar 

  • Kullin B, Brock T, Rajabally N et al (2016) Characterizations of Clostridium difficile strains isolated from Groote Schuur Hospital, Cape Town, South Africa. Eur J Clin Microbiol Infect Dis 35:1709–1718

    Article  CAS  PubMed  Google Scholar 

  • Kullin B, Wojno J, Abratt V et al (2017) Toxin A-negative toxin B-positive ribotype 017 Clostridium difficile is the dominant strain type in patients with diarrhoea attending tuberculosis hospitals in Cape Town, South Africa. Eur J Clin Microbiol Infect Dis 36:163–175

    Article  CAS  PubMed  Google Scholar 

  • Kuwata Y, Tanimoto S, Sawabe E et al (2015) Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from a university teaching hospital in Japan. Eur J Clin Microbiol Infect 34:763–772

    Article  CAS  Google Scholar 

  • Lachowicz D, Pituch H, Obuch-Woszczatyński P (2015) Antimicrobial susceptibility patterns of Clostridium difficile strains belonging to different polymerase chain reaction ribotypes isolated in Poland in 2012. Anaerobe 31:37–41

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Lee Y, Lee K et al (2014) The changes of PCR ribotype and antimicrobial resistance of Clostridium difficile in a tertiary care hospital over 10 years. J Med Microbiol 63:819–823

    Article  CAS  PubMed  Google Scholar 

  • Leeds JA, Sachdeva M, Mullin S et al (2014) In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin. J Antimicrob Chemother 69:41–44

    Article  CAS  PubMed  Google Scholar 

  • Lessa FC, Gould CV, McDonald LC (2012) Current status of Clostridium difficile infection epidemiology. Clin Infect Dis 55:65–70

    Article  CAS  Google Scholar 

  • Lessa FC, Mu Y, Bamberg WM et al (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834

    Article  CAS  PubMed  Google Scholar 

  • Liao CH, Ko WC, Lu JJ et al (2012) Characterizations of clinical isolates of Clostridium difficile by toxin genotypes and by susceptibility to 12 antimicrobial agents, including fidaxomicin (OPT-80) and rifaximin: a multicenter study in Taiwan. Antimicrob Agents Chemother 56:3943–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SC, Foster NF, Riley TV (2016) Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite. Anaerobe 37:67–71

    Article  CAS  PubMed  Google Scholar 

  • López-Ureña D, Quesada-Gómez C, Montoya-Ramírez M et al (2016) Predominance and high antibiotic resistance of the emerging Clostridium difficile genotypes NAPCR1 and NAP9 in a Costa Rican hospital over a 2-year period without outbreaks. Emerg Microbes Infect 5:e42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Louie TJ, Miller MA, Mullane KM et al (2011) Fidaxomicin versus Vancomycin for Clostridium difficile infection. N Engl J Med 364:422–431

    Article  CAS  PubMed  Google Scholar 

  • Louie TJ, Cannon K, Byrne B et al (2012) Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin Infect Dis 55(Suppl. 2):S132–S142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch T, Chong P, Zhang J et al (2013) Characterization of a stable, metronidazole-resistant Clostridium difficile clinical isolate. PLoS One 8:e53757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyras D, Cooper MA (2015) Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem 58:5164–5185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyras D, Storie C, Huggins AS et al (1998) Chloramphenicol resistance in Clostridium difficile is encoded on Tn4453 transposons that are closely related to Tn4451 from Clostridium perfringens. Antimicrob Agents Chemother 42:1563–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mac Aogáin M, Kilkenny S, Walsh C et al (2015) Identification of a novel mutation at the primary dimer interface of GyrA conferring fluoroquinolone resistance in Clostridium difficile. J Glob Antimicrob Resist 3:295–299

    Article  PubMed  Google Scholar 

  • Mackin KE, Elliott B, Kotsanas D et al (2015) Molecular characterization and antimicrobial susceptibilities of Clostridium difficile clinical isolates from Victoria, Australia. Anaerobe 34:80–83

    Article  CAS  PubMed  Google Scholar 

  • Marin M, Martin A, Alcala L et al (2015) Clostridium difficile isolates with high linezolid MICs harbor the multiresistance gene cfr. Antimicrob Agents Chemother 59:586–589

    Article  PubMed  Google Scholar 

  • McDonald LC, Killgore GE, Thompson A et al (2005) An epidemic, toxin gene–variant strain of Clostridium difficile. N Engl J Med 353:2433–2441

    Article  CAS  PubMed  Google Scholar 

  • Miller BA, Chen LF, Sexton DJ et al (2011a) Comparison of the burdens of hospital-onset, healthcare facility-associated Clostridium difficile infection and of healthcare-associated infection due to methicillin-resistant Staphylococcus aureus in community hospitals. Infect Control Hosp Epidemiol 32:387–390

    Article  PubMed  Google Scholar 

  • Miller MA, Blanchette R, Spigaglia P et al (2011b) Divergent rifamycin susceptibilities of Clostridium difficile strains in Canada and Italy and predictive accuracy of rifampin Etest for rifamycin resistance. J Clin Microbiol 49:4319–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller-Roll T, Na’amnih W, Cohen D et al (2016) Molecular types and antimicrobial susceptibility patterns of Clostridium difficile isolates in different epidemiological settings in a tertiary care center in Israel. Diagn Microbiol Infect Dis 86:450–454

    Article  CAS  PubMed  Google Scholar 

  • Moura I, Spigaglia P, Barbanti F et al (2013) Analysis of metronidazole susceptibility in different Clostridium difficile PCR ribotypes. J Antimicrob Chemother 68:362–365

    Article  CAS  PubMed  Google Scholar 

  • Moura I, Monot M, Tani C et al (2014) Multidisciplinary analysis of a nontoxigenic Clostridium difficile strain with stable resistance to metronidazole. Antimicrob Agents Chemother 58:4957–4960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mullane KM, Gorbach S (2011) Fidaxomicin: first-in-class macrocyclic antibiotic. Expert Rev Anti-Infect Ther 9:767–777

    Article  CAS  PubMed  Google Scholar 

  • Mullany P, Wilks M, Lamb I et al (1990) Genetic analysis of a tetracycline resistance determinant from Clostridium difficile and its conjugal transfer to and from Bacillus subtilis. J Gen Microbiol 136:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Mullany P, Wilks M, Tabaqchali S (1995) Transfer of macrolide-lincosamide-streptogramin B (MLS) resistance in Clostridium difficile is linked to a gene homologous with toxin A and is mediated by a conjugative transposon, Tn5398. J Antimicrob Chemother 2:305–315

    Article  Google Scholar 

  • Mullany P, Williams R, Langridge GC et al (2012) Behavior and target site selection of conjugative transposon Tn916 in two different strains of toxigenic Clostridium difficile. Appl Environ Microbiol 78:2147–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullany P, Allan E, Roberts AP (2015) Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol 166:361–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musher DM, Aslam S, Logan N et al (2005) Relatively poor outcome after treatment of Clostridium difficile colitis with metronidazole. Clin Infect Dis 40:1586–1590

    Article  CAS  PubMed  Google Scholar 

  • Muto CA, Pokrywka M, Shutt K et al (2005) A large outbreak of Clostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use. Infect Control Hosp Epidemiol 26:273–280

    Article  PubMed  Google Scholar 

  • Muto CA, Blank MK, Marsh JW et al (2007) Control of an outbreak of infection with the hypervirulent Clostridium difficile BI strain in a university hospital using a comprehensive “bundle” approach. Clin Infect Dis 45:1266–1273

    Article  PubMed  Google Scholar 

  • Norman KN, Scott HM, Harvey RB et al (2014) Comparison of antimicrobial susceptibility among Clostridium difficile isolated from an integrated human and swine population in Texas. Foodborne Pathog Dis 11:257–264

    Article  CAS  PubMed  Google Scholar 

  • Novak A, Spigaglia P, Barbanti F et al (2014) First clinical and microbiological characterization of Clostridium difficile infection in a Croatian University Hospital. Anaerobe 30:18–23

    Article  PubMed  Google Scholar 

  • Nyc O, Tejkalova R, Kriz Z et al (2017) Two clusters of fluoroquinolone and clindamycin-resistant Clostridium difficile PCR ribotype 001 strain recognized by capillary electrophoresis ribotyping and multilocus variable tandem repeat analysis. Microb Drug Resist 23:609–615

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JR, Galang MA, Sambol SP et al (2008) Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother 52:2813–2817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obuch-Woszczatyński P, Dubiel G, Harmanus C et al (2013) Emergence of Clostridium difficile infection in tuberculosis patients due to a highly rifampicin-resistant PCR ribotype 046 clone in Poland. Eur J Clin Microbiol Infect Dis 32:1027–1103

    Article  PubMed  PubMed Central  Google Scholar 

  • Obuch-Woszczatyński P, Lachowicz D, Schneider A et al (2014) Occurrence of Clostridium difficile PCR-ribotype 027 and it’s closely related PCR-ribotype 176 in hospitals in Poland in 2008–2010. Anaerobe 28:13–17

    Article  PubMed  Google Scholar 

  • Oka K, Osaki T, Hanawa T et al (2012) Molecular and microbiological characterization of Clostridium difficile isolates from single, pelapse, and reinfection cases. J Clin Microbiol 50:915–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Optimer Pharmaceuticals, Inc. (2011) Anti-infective drugs advisory committee briefing document: dificid™ (fidaxomicin tablets) for the treatment of Clostridium difficile infection (CDI), also known as Clostridium difficile-associated diarrhea (CDAD), and for reducing the risk of recurrence when used for treatment of initial CDI. Available at: http://www.fda.gov/downloads/AdvisoryCommittees/Committees MeetingMaterials/Drugs/Anti-InfectiveDrugsAdviso ryCommittee/UCM249354.pdf

  • Pecavar V, Blaschitz M, Hufnagl P et al (2012) High-resolution melting analysis of the single nucleotide polymorphism hot-spot region in the rpoB gene as an indicator of reduced susceptibility to rifaximin in Clostridium difficile. J Med Microbiol 61:780–785

    Article  CAS  PubMed  Google Scholar 

  • Peláez T, Cercenado E, Alcalá L et al (2008) Metronidazole resistance in Clostridium difficile is heterogeneous. J Clin Microbiol 46:3028–3032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pépin JL, Valiquette ME, Alary ME et al (2004) Clostridium difficile-associated diarrhea in a region of Quebec from 1991–2003: a changing pattern disease severity. CMAJ 17:466–472

    Article  Google Scholar 

  • Pépin J, Alary ME, Valiquette L et al (2005a) Increasing risk of relapse after treatment of Clostridium difficile colitis in Quebec, Canada. Clin Infect Dis 40:1591–1597

    Article  PubMed  Google Scholar 

  • Pépin JL, Valiquette ME, Clossette B (2005b) Mortality attributed to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hyperviluent strain in Quebec. CMAJ 173:1037–1042

    Article  PubMed  PubMed Central  Google Scholar 

  • Perkins HR, Nieto M (1974) The chemical basis for the action of the vancomycin group of antibiotics. Ann N Y Acad Sci 235:348–363

    Article  CAS  PubMed  Google Scholar 

  • Pirš T, Avberšek J, Zdovc I et al (2013) Antimicrobial susceptibility of animal and human isolates of Clostridium difficile by broth microdilution. J Med Microbiol 62:1478–1485

    Article  PubMed  CAS  Google Scholar 

  • Pituch H, Brazier JS, Obuch-Woszczatynski P et al (2006) Prevalence and association of PCR ribotypes of Clostridium difficile isolated from symptomatic patients from Warsaw with macrolide-lincosamide-streptogramin B (MLSB) type resistance. J Med Microbiol 55:207–213

    Article  CAS  PubMed  Google Scholar 

  • Poilane I, Cruaud P, Torlotin JC et al (2000) Comparison of the E test to the reference agar dilution method for antibiotic susceptibility testing of Clostridium difficile. Clin Microbiol Infect 6:155–156

    Article  CAS  PubMed  Google Scholar 

  • Putsathit P, Maneerattanaporn M, Piewngam P et al (2017) Antimicrobial susceptibility of Clostridium difficile isolated in Thailand. Antimicrob Resist Infect Control 6:58. https://doi.org/10.1186/s13756-017-0214-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Vargas G, Quesada-Gómez C, Acuña-Amador L et al (2017) A Clostridium difficile lineage endemic to Costa Rican hospitals is multidrug resistant by acquisition of chromosomal mutations and novel mobile genetic elements. Antimicrob Agents Chemother 61:e02054. https://doi.org/10.1128/AAC.02054-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratnayake L, McEwen J, Henderson N et al (2011) Control of an outbreak of diarrhoea in a vascular surgery unit caused by a high-level clindamycin-resistant Clostridium difficile PCR ribotype 106. J Hosp Infect 79:242–247

    Article  CAS  PubMed  Google Scholar 

  • Redelings MD, Sorvillo F, Mascola L (2007) Increase in Clostridium difficile-related mortality rates, United States, 1999–2004. Emerg Infect Dis 13:1417–1419

    Article  PubMed  PubMed Central  Google Scholar 

  • Reil M, Hensgens MPM, Kuijper EJ et al (2012) Seasonality of Clostridium difficile infections in Southern Germany. Epidemiol Infect 140:1787–1793

    Article  CAS  PubMed  Google Scholar 

  • Richardson C, Kim P, Lee C et al (2015) Comparison of Clostridium difficile isolates from individuals with recurrent and single episode of infection. Anaerobe 33:105–108

    Article  PubMed  Google Scholar 

  • Roberts AP, Mullany P (2011) Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol Rev 35:856–871

    Article  CAS  PubMed  Google Scholar 

  • Roberts MC, McFarland LV, Mullany P et al (1994) Characterization of the genetic basis of antibiotic resistance in Clostridium difficile. J Antimicrob Chemother 33:419–429

    Article  CAS  PubMed  Google Scholar 

  • Roberts AP, Johanesen PA, Lyras D et al (2001) Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology 147:1243–1251

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Pardo D, Almirante B, Bartolomé RM et al (2013) Epidemiology of Clostridium difficile infection and risk factors for unfavorable clinical outcomes: results of a hospital-based study in Barcelona, Spain. J Clin Microbiol 51:1465–1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Salix Pharmaceuticals, Ltd. 10 December 2003, posting date. Salix receives FDA notification that rifaximin amendment considered a complete response. Salix Pharmaceuticals, Raleigh. http://www.businesswire.com/news/home/20031210005070/en/Salix-Receives-FDA-Notification-Rifamixin-Amendment-Considered

  • Santos A, Isidro J, Silva C et al (2016) Molecular and epidemiologic study of Clostridium difficile reveals unusual heterogeneity in clinical strains circulating in different regions in Portugal. Clin Microbiol Infect 22:695–700

    Article  CAS  PubMed  Google Scholar 

  • Schmidt C, Löffler B, Ackermann G (2007) Antimicrobial phenotypes and molecular basis in clinical strains of Clostridium difficile. Diagn Microbiol Infect Dis 59:1–5

    Article  CAS  PubMed  Google Scholar 

  • Sears P, Crook DW, Louie TJ et al (2012) Fidaxomicin attains high fecal concentrations with minimal plasma concentrations following oral administration in patients with Clostridium difficile infection. Clin Infect Dis 55(Suppl 2):S116–SS12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebaihia M, Wren BW, Mullany P et al (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786

    Article  PubMed  CAS  Google Scholar 

  • Senoh M, Kato H, Fukuda T et al (2015) Predominance of PCR-ribotypes, 018 (smz) and 369 (trf) of Clostridium difficile in Japan: a potential relationship with other global circulating strains? J Med Microbiol 64:1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Seugendo M, Mshana SE, Hokororo A et al (2015) Clostridium difficile infections among adults and children in Mwanza/Tanzania: is it an underappreciated pathogen among immunocompromised patients in sub-Saharan Africa? New Microbes New Infect 8:99–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shayganmehr F-S, Alebouyeh M, Azimirad M et al (2015) Association of tcdA+/tc dB+ Clostridium difficile genotype with emergence of multidrugresistant strains conferring metronidazole resistant phenotype. Iran Biomed J 19:143–148

    PubMed  PubMed Central  Google Scholar 

  • Simango C, Uladi S (2014) Detection of Clostridium difficile diarrhoea in Harare, Zimbabwe. Trans R Soc Trop Med Hyg 108:354–357

    Article  CAS  PubMed  Google Scholar 

  • Spigaglia P (2016) Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis 3:23–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spigaglia P, Mastrantonio P (2004) Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J Med Microbiol 53:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Spigaglia P, Carucci V, Barbanti F et al (2005) ErmB determinants and Tn916-like elements in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother 49:2550–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spigaglia P, Barbanti F, Mastrantonio P (2006) New variants of the tet(M) gene in Clostridium difficile clinical isolates harbouring Tn916-like elements. J Antimicrob Chemother 57:1205–1209

    Article  CAS  PubMed  Google Scholar 

  • Spigaglia P, Barbanti F, Mastrantonio P (2007) Detection of a genetic linkage between genes coding for resistance to tetracycline and erythromycin in Clostridium difficile. Microb Drug Resist 13:90–95

    Article  CAS  PubMed  Google Scholar 

  • Spigaglia P, Barbanti F, Mastrantonio P (2008a) Tetracycline resistance gene tet(W) in the pathogenic bacterium Clostridium difficile. Antimicrob Agents Chemother 52:770–773

    Article  CAS  PubMed  Google Scholar 

  • Spigaglia P, Barbanti F, Mastrantonio P et al (2008b) Fluoroquinolone resistance in Clostridium difficile isolates from a prospective study of C. difficile infections in Europe. J Med Microbiol 57:784–789

    Article  CAS  PubMed  Google Scholar 

  • Spigaglia P, Barbanti F, Louie T et al (2009) Molecular analysis of the gyrA and gyrB quinolone resistance-determining regions of fluoroquinolone-resistant Clostridium difficile mutants selected in vitro. Antimicrob Agents Chemother 53:2463–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spigaglia P, Barbanti F, Dionisi AM et al (2010) Clostridium difficile isolates resistant to fluoroquinolones in Italy: emergence of PCR ribotype 018. J Clin Microbiol 48:2892–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spigaglia P, Barbanti F, Mastrantonio P, European Study Group on Clostridium difficile (ESGCD) (2011) Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother 66:2227–2234

    Article  CAS  PubMed  Google Scholar 

  • Spigaglia P, Barbanti F, Morandi M et al (2015) Diagnostic testing for Clostridium difficile in Italian microbiological laboratories. Anaerobe 37:29–33

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A, Talaue M, Liu S et al (2011) New target for inhibition of bacterial RNA polymerase: “switch region”. Curr Opin Microbiol Antimicrob/Genomics 14:532–543

    Article  CAS  Google Scholar 

  • Tannock GW, Munro K, Taylor C et al (2010) A new macrocyclic antibiotic, fidaxomicin (OPT-80), causes less alteration to the bowel microbiota of Clostridium difficile-infected patients than does vancomycin. Microbiology 156:3354–3359

    Article  CAS  PubMed  Google Scholar 

  • Tenover FC, Tickler IA, Persing DH (2012) Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrob Agents Chemother 56:2929–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terhes G, Maruyama A, Latkóczy K et al (2014) In vitro antibiotic susceptibility profile of Clostridium difficile excluding PCR ribotype 027 outbreak strain in Hungary. Anaerobe 30:41–44

    Article  CAS  PubMed  Google Scholar 

  • Vardakas KZ, Polyzos KA, Patouni K et al (2012) Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole: a systematic review of the evidence. Int J Antimicrob Agents 40:1–8

    Article  CAS  PubMed  Google Scholar 

  • Varshney JB, Very KJ, Williams JL et al (2014) Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania. Foodborne Pathog Dis 11:822–829

    Article  CAS  PubMed  Google Scholar 

  • Vuotto C, Moura I, Barbanti F et al (2016) Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. Pathog Dis 74:ftv114. https://doi.org/10.1093/femspd/ftv114

    Article  CAS  PubMed  Google Scholar 

  • Walkty A, Boyd DA, Gravel D et al (2010) Molecular characterization of moxifloxacin resistance from Canadian Clostridium difficile clinical isolates. Diagn Microbiol Infect Dis 66:419–424

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Smith MCM, Mullany P (2006) The conjugative transposon Tn5397 has a strong preference for integration into its Clostridium difficile target site. J Bacteriol 188:4871–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasels F, Spigaglia P, Barbanti F et al (2013) Clostridium difficile erm(B)-containing elements and the burden on the in vitro fitness. J Med Microbiol 62:1461–1467

    Article  CAS  PubMed  Google Scholar 

  • Wasels F, Monot M, Spigaglia P et al (2014) Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB. Microb Drug Resist 20:555–560

    Article  CAS  PubMed  Google Scholar 

  • Wasels F, Kuehne SA, Cartman ST et al (2015a) Fluoroquinolone resistance does not impose a cost on the fitness of Clostridium difficile in vitro. Antimicrob Agents Chemother 59:1794–1796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wasels F, Spigaglia P, Barbanti F et al (2015b) Integration of erm(B)-containing elements through large chromosome fragment exchange in Clostridium difficile. Mob Genet Elem 1:12–16

    Article  CAS  Google Scholar 

  • Weber I, Riera E, Déniz C et al (2013) Molecular epidemiology and resistance profiles of Clostridium difficile in a tertiary care hospital in Spain. Int J Med Microbiol 303:128–133

    Article  CAS  PubMed  Google Scholar 

  • Wiström J, Norrby SR, Myhre EB et al (2001) Frequency of antibiotic-associated diarrhea in 2462 antibiotic-treated hospitalized patients: a prospective study. J Antimicrob Chemother 47:43–50

    Article  PubMed  Google Scholar 

  • Wren BW, Mullany P, Clayton C et al (1988) Molecular cloning and genetic analysis of a chloramphenicol acetyltransferase determinant from Clostridium difficile. Antimicrob Agents Chemother 32:1213–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wren BW, Mullany P, Clayton C et al (1989) Nucleotide sequence of a chloramphenicol acetyl transferase gene from Clostridium difficile. Nucleic Acids Res 17:4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young GP, Ward PB, Bayley N et al (1985) Antibiotic-associated colitis due to Clostridium difficile: double-blind comparison of vancomycin with bacitracin. Gastroenterology 89:1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Sun D (2013) Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules 18:6230–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Burnham C-AD, Hink T et al (2014) Phenotypic and genotypic analysis of Clostridium difficile isolates: a single-center study. J Clin Microbiol 52:4260–4266

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Spigaglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spigaglia, P., Mastrantonio, P., Barbanti, F. (2018). Antibiotic Resistances of Clostridium difficile. In: Mastrantonio, P., Rupnik, M. (eds) Updates on Clostridium difficile in Europe. Advances in Experimental Medicine and Biology(), vol 1050. Springer, Cham. https://doi.org/10.1007/978-3-319-72799-8_9

Download citation

Publish with us

Policies and ethics