Skip to main content

Abstract

Spherical t-designs on \(\mathbb {S}^{d}\subset \mathbb {R}^{d+1}\) provide N nodes for an equal weight numerical integration rule which is exact for all spherical polynomials of degree at most t. This paper considers the generation of efficient, where N is comparable to (1 + t)dd, spherical t-designs with good geometric properties as measured by their mesh ratio, the ratio of the covering radius to the packing radius. Results for \(\mathbb {S}^{2}\) include computed spherical t-designs for t = 1, …, 180 and symmetric (antipodal) t-designs for degrees up to 325, all with low mesh ratios. These point sets provide excellent points for numerical integration on the sphere. The methods can also be used to computationally explore spherical t-designs for d = 3 and higher.

Dedicated to Ian H. Sloan on the occasion of his 80th birthday in acknowledgement of his many fruitful ideas and generosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agboola, D., Knol, A.L., Gill, P.M.W., Loos, P.F.: Uniform electron gases. III. Low density gases on three dimensional spheres. J. Chem. Phys. 143(8), 084114-1–6 (2015)

    Article  Google Scholar 

  2. Area, I., Dimitrov, D.K., Godoy, E., Ronveaux, A.: Zeros of Gegenbauer and Hermite polynomials and connection coefficients. Math. Comput. 73(248), 1937–1951 (electronic) (2004)

    Article  MathSciNet  Google Scholar 

  3. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics, vol. 2044. Springer, Heidelberg (2012)

    Book  Google Scholar 

  4. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J. Am. Math. Soc. 21(3), 909–924 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bannai, E., Bannai, E.: A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30(6), 1392–1425 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bannai, E., Damerell, R.M.: Tight spherical designs. I. J. Math. Soc. Japan 31(1), 199–207 (1979)

    Article  MathSciNet  Google Scholar 

  7. Bannai, E., Damerell, R.M.: Tight spherical designs. II. J. Lond. Math. Soc. (2) 21(1), 13–30 (1980)

    Google Scholar 

  8. Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. (2) 178(2), 443–452 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bondarenko, A.V., Hardin, D.P., Saff, E.B.: Mesh ratios for best-packing and limits of minimal energy configurations. Acta Math. Hungar. 142(1), 118–131 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bondarenko, A., Radchenko, D., Viazovska, M.: Well-separated spherical designs. Constr. Approx. 41(1), 93–112 (2015)

    Article  MathSciNet  Google Scholar 

  11. Boyvalenkov, P.G., Delchev, K.: On maximal antipodal spherical codes with few distances. Electron Notes Discrete Math. 57, 85–90 (2017)

    Article  Google Scholar 

  12. Boyvalenkov, P.G., Dragnev, P.D., Hardin, D.P., Saff, E.B., Stoyanova, M.M.: Universal upper and lower bounds on energy of spherical designs. Dolomites Res. Notes Approx. 8(Special Issue), 51–65 (2015)

    Google Scholar 

  13. Brauchart, J.S., Saff, E.B., Sloan, I.H., Womersley, R.S.: QMC designs: optimal order quasi Monte Carlo integration schemes on the sphere. Math. Comput. 83(290), 2821–2851 (2014)

    Article  MathSciNet  Google Scholar 

  14. Brauchart, J.S., Reznikov, A.B., Saff, E.B., Sloan, I.H., Wang, Y.G., Womersley, R.S.: Random point sets on the sphere – hole radii, covering and separation. Exp. Math. 27(1) , 62–81 (2018)

    Google Scholar 

  15. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.Y.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MathSciNet  Google Scholar 

  16. Calef, M., Griffiths, W., Schulz, A.: Estimating the number of stable configurations for the generalized Thomson problem. J. Stat. Phys. 160(1), 239–253 (2015)

    Article  MathSciNet  Google Scholar 

  17. Chen, X., Womersley, R.S.: Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J. Numer. Anal. 44(6), 2326–2341 (electronic) (2006)

    Article  MathSciNet  Google Scholar 

  18. Chen, X., Frommer, A., Lang, B.: Computational existence proofs for spherical t-designs. Numer. Math. 117(2), 289–305 (2011)

    Article  MathSciNet  Google Scholar 

  19. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)

    Google Scholar 

  20. Cohn, H., Conway, J.H., Elkies, N.D., Kumar, A.: The D 4 root system is not universally optimal. Exp. Math. 16(3), 313–320 (2007)

    Google Scholar 

  21. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, 3rd edn. Springer, New York (1999). With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov

    Google Scholar 

  22. Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover Publications, Inc., New York (1973)

    Google Scholar 

  23. Damelin, S.B., Maymeskul, V.: On point energies, separation radius and mesh norm for s-extremal configurations on compact sets in \(\mathbb {R}^n\). J. Complexity 21(6), 845–863 (2005)

    Google Scholar 

  24. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6(3), 363–388 (1977)

    Article  MathSciNet  Google Scholar 

  25. Demmel, J., Nguyen, H.D.: Parallel reproducible summation. IEEE Trans. Comput. 64(7), 2060–2070 (2015)

    Article  MathSciNet  Google Scholar 

  26. Erber, T., Hockney, G.M.: Complex systems: equilibrium configurations of N equal charges on a sphere (2 ≤ N ≤ 112). In: Advances in Chemical Physics, vol. XCVIII, pp. 495–594. Wiley, New York (1997)

    Chapter  Google Scholar 

  27. Fliege, J., Maier, U.: The distribution of points on the sphere and corresponding cubature formulae. IMA J. Numer. Anal. 19(2), 317–334 (1999)

    Article  MathSciNet  Google Scholar 

  28. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F., Ulerich, R.: GNU Scientific Library. https://www.gnu.org/software.gsl/ . Accessed 2016

  29. Górski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M., Bartelmann, M.: HEALPix: a framework for high resolution discretisation and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005)

    Article  Google Scholar 

  30. Grabner, P., Sloan, I.H.: Lower bounds and separation for spherical designs. In: Uniform Distribution Theory and Applications, pp. 2887–2890. Mathematisches Forschungsinstitut Oberwolfach Report 49/2013 (2013)

    Google Scholar 

  31. Grabner, P.J., Tichy, R.F.: Spherical designs, discrepancy and numerical integration. Math. Comput. 60(201), 327–336 (1993)

    Article  MathSciNet  Google Scholar 

  32. Gräf, M., Potts, D.: On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms. Numer. Math. 119(4), 699–724 (2011)

    Article  MathSciNet  Google Scholar 

  33. Hardin, R.H., Sloane, N.J.A.: McLaren’s improved snub cube and other new spherical designs in three dimensions. Discret. Comput. Geom. 15(4), 429–441 (1996)

    Article  MathSciNet  Google Scholar 

  34. Hardin, R.H., Sloane, N.J.A.: Spherical designs. http://neilsloane.com/sphdesigns/. Accessed 2017

  35. Hardin, D.P., Saff, E.B., Whitehouse, J.T.: Quasi-uniformity of minimal weighted energy points on compact metric spaces. J. Complexity 28(2), 177–191 (2012)

    Article  MathSciNet  Google Scholar 

  36. Hesse, K.: A lower bound for the worst-case cubature error on spheres of arbitrary dimension. Numer. Math. 103(3), 413–433 (2006)

    Article  MathSciNet  Google Scholar 

  37. Hesse, K., Leopardi, P.: The Coulomb energy of spherical designs on S 2. Adv. Comput. Math. 28(4), 331–354 (2008)

    Article  MathSciNet  Google Scholar 

  38. Hesse, K., Sloan, I.H.: Cubature over the sphere S 2 in Sobolev spaces of arbitrary order. J. Approx. Theory 141(2), 118–133 (2006)

    Google Scholar 

  39. Hesse, K., Sloan, I.H.: Hyperinterpolation on the sphere. In: Frontiers in Interpolation and Approximation. Pure Appl. Math. (Boca Raton), vol. 282, pp. 213–248. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  40. Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 1st edn., pp. 1187–1220. Springer, Heidelberg (2010)

    Google Scholar 

  41. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)

    Google Scholar 

  42. Holmes, S.A., Featherstone, W.E.: A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J. Geodesy 76, 279–299 (2002)

    Article  Google Scholar 

  43. Jekeli, C., Lee, J.K., Kwon, A.H.: On the computation and approximation of ultra-high degree spherical harmonic series. J. Geodesy 81, 603–615 (2007)

    Article  Google Scholar 

  44. Leopardi, P.: A partition of the unit sphere into regions of equal area and small diameter. Electron. Trans. Numer. Anal. 25, 309–327 (electronic) (2006)

    Google Scholar 

  45. McLaren, A.D.: Optimal numerical integration on a sphere. Math. Comput. 17, 361–383 (1963)

    Article  MathSciNet  Google Scholar 

  46. Morales, J.L., Nocedal, J.: Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization”. ACM Trans. Math. Softw. 38(1), Art. 7, 4 (2011)

    Article  Google Scholar 

  47. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.9 of 2014-08-29. Online companion to [49]

  48. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)

    Google Scholar 

  49. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010). Print companion to [47]

    Google Scholar 

  50. Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. In: Algorithmic and Quantitative Real Algebraic Geometry (Piscataway, NJ, 2001). DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 60, pp. 83–99. American Mathematical Society, Providence (2003)

    Chapter  Google Scholar 

  51. Ragozin, D.L.: Constructive polynomial approximation on spheres and projective spaces. Trans. Am. Math. Soc. 162, 157–170 (1971)

    MathSciNet  MATH  Google Scholar 

  52. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1(6), 647–662 (1994)

    Article  MathSciNet  Google Scholar 

  53. Rankin, R.A.: The closest packing of spherical caps in n dimensions. Proc. Glasg. Math. Assoc. 2, 139–144 (1955)

    Article  MathSciNet  Google Scholar 

  54. Sansone, G.: Orthogonal Functions. Interscience Publishers, Inc., New York (1959). Revised English ed. Translated from the Italian by A. H. Diamond; with a foreword by E. Hille. Pure and Applied Mathematics, vol. IX, Interscience Publishers, Ltd., London

    Google Scholar 

  55. Seymour, P.D., Zaslavsky, T.: Averaging sets: a generalization of mean values and spherical designs. Adv. Math. 52(3), 213–240 (1984)

    Article  MathSciNet  Google Scholar 

  56. Sloan, I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83(2), 238–254 (1995)

    Article  MathSciNet  Google Scholar 

  57. Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21(1–2), 107–125 (2004)

    Article  MathSciNet  Google Scholar 

  58. Sloan, I.H., Womersley, R.S.: A variational characterisation of spherical designs. J. Approx. Theory 159(2), 308–318 (2009)

    Article  MathSciNet  Google Scholar 

  59. Sloan, I.H., Womersley, R.S.: Filtered hyperinterpolation: a constructive polynomial approximation on the sphere. Int. J. Geomath. 3(1), 95–117 (2012)

    Article  MathSciNet  Google Scholar 

  60. Sobolev, S.L.: Cubature formulas on the sphere which are invariant under transformations of finite rotation groups. Dokl. Akad. Nauk SSSR 146, 310–313 (1962)

    Google Scholar 

  61. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975). American Mathematical Society, Colloquium Publications, vol. XXIII

    Google Scholar 

  62. Tammes, P.M.L.: On the origin of number and arrangement of places of exit on the surface of pollen grains. Recueil des Travaux Botanique Neerlandais 27, 1–84 (1930)

    Google Scholar 

  63. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  Google Scholar 

  64. Wang, K., Li, L.: Harmonic Analysis and Approximation on the Unit Sphere. Science Press, Beijing (2006)

    Google Scholar 

  65. Wang, Y.G., Le Gia, Q.T., Sloan, I.H., Womersley, R.S.: Fully discrete needlet approximation on the sphere. Appl. Comput. Harmon. Anal. 43, 292–316 (2017)

    Article  MathSciNet  Google Scholar 

  66. Womersley, R.S.: Efficient spherical designs with good geometric properties. http://web.maths.unsw.edu.au/~rsw/Sphere/EffSphDes/ (2017)

  67. Yudin, V.A.: Covering a sphere and extremal properties of orthogonal polynomials. Discret. Math. Appl. 5(4), 371–379 (1995)

    Google Scholar 

  68. Yudin, V.A.: Lower bounds for spherical designs. Izv. Ross. Akad. Nauk Ser. Mat. 61(3), 213–223 (1997)

    Article  MathSciNet  Google Scholar 

  69. Zhou, Y., Chen, X.: Spherical t 𝜖 designs and approximation on the sphere. Math. Comput. (2018). http://dx.doi.org/10.1090/mcom/3306

    Google Scholar 

Download references

Acknowledgements

This research includes extensive computations using the Linux computational cluster Katana supported by the Faculty of Science, UNSW Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Womersley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Womersley, R.S. (2018). Efficient Spherical Designs with Good Geometric Properties. In: Dick, J., Kuo, F., Woźniakowski, H. (eds) Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan. Springer, Cham. https://doi.org/10.1007/978-3-319-72456-0_57

Download citation

Publish with us

Policies and ethics