Skip to main content

Transport of Sodium in TiB2 Materials Investigated by a Laboratory Test and DFT Calculations

  • Conference paper
  • First Online:
Light Metals 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Inert, wettable cathodes have a significant potential for improving the Hall-Héroult electrolysis cell. With good wetting properties towards aluminium, the anode—cathode distance may be significantly reduced, leading to lower energy consumption and potentially extending the lifetime of the cathode. TiB2 is one of the most promising inert cathode candidate materials; however, the implementation of the material is not straight forward, partly due to the challenges of understanding the degradation mechanisms. Sodium vapour, which has proved to have great impact on the traditional carbon cathodes, has drawn less attention for TiB2 materials. Thermogravimetric tests with various sodium vapour activities have been used to study the effect of sodium vapour on commercial TiB2 materials. The chemical stability of TiB2 towards sodium and the transport properties of sodium in TiB2 materials have been investigated by atomistic calculations based on density functional theory. Finally, a possible degradation scheme of TiB2 materials subject to sodium environments is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ransley CE (2016) The Application of the Refractory Carbides and Borides to Aluminum Reduction Cells. In: Tomsett A, Johnson J (eds) Essential Readings in Light Metals. Springer, Cham, p 1134–1144.

    Chapter  Google Scholar 

  2. Li, J, Lü, X-j, Li, Q-y, Liu, Y-x (2008) Research Progress in TiB2 Wettable Cathode for Aluminum Reduction. JOM 60(8): 32–37.

    Article  CAS  Google Scholar 

  3. Jensen, MS, Pezzotta, M, Zhang, ZL, Einarsrud, MA, Grande, T (2008) Degradation of TiB2 ceramics in liquid aluminum. J. Eur. Ceram. Soc. 28(16): 3155–3164.

    Article  CAS  Google Scholar 

  4. Pezzotta, M, Zhang, ZL, Jensen, M, Grande, T, Einarsrud, MA (2008) Cohesive zone modeling of grain boundary microcracking induced by thermal anisotropy in titanium diboride ceramics. Comp. Mat. Sc. 43(3): 440–449.

    Article  CAS  Google Scholar 

  5. Heidari, H, Alamdari, H, Dubé, D, Schulz, R (2012) Interaction of molten aluminum with porous TiB2-based ceramics containing Ti–Fe additives. J. Eur. Ceram. Soc. 32(4): 937–945.

    Article  CAS  Google Scholar 

  6. Sørlie, M, Øye, HA (2010) Cathodes in Aluminium Electrolysis. 3rd ed. Aluminium-Verlag Marketing & Kommunikation GmbH, Germany.

    Google Scholar 

  7. Wang, Z, Selbach, SM, Grande, T (2014) Van der Waals density functional study of the energetics of alkali metal intercalation in graphite. RSC Advances 4(8): 4069–4079.

    Article  Google Scholar 

  8. Li, J, Fang, J, Li, Q, Lai, Y-q (2004) Effect of TiB2 content on resistance to sodium penetration of TiB2/C cathode composites for aluminium electrolysis. J. Central South Univ. of Tech. 11(4): 400–404.

    Google Scholar 

  9. Wang, Z, Ratvik AP, Skybakmoen, E, Grande, T (2014) Interaction of sodium vapor and graphite studied by thermogravimetric analysis. Light Metals 2014: 1239–1244.

    Google Scholar 

  10. Bale, CW, Chartrand, P, Decterov, S, Eriksson, G, Hack, K, Mahfoud, RB, Melancon, J, Pelton, AD, Petersen, S (2002) FactSage thermochemical software and databases. Calphad 26(2): 189–228.

    Article  CAS  Google Scholar 

  11. Blöchl, PE (1994) Projector augmented-wave method. Physical Review B 50(24): 17953–17979.

    Article  Google Scholar 

  12. Kresse, G, Hafner, J (1993) Ab initio molecular dynamics for liquid metals. Physical Review B 47(1): 558–561.

    Article  CAS  Google Scholar 

  13. Kresse, G, Hafner, J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B 49(20): 14251–14269.

    Article  CAS  Google Scholar 

  14. Kresse, G, Furthmüller, J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mat. Sc. 6(1): 15–50.

    Article  CAS  Google Scholar 

  15. Kresse, G, Furthmüller, J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54(16): 11169–11186.

    Article  CAS  Google Scholar 

  16. Perdew, JP, Burke, K, Ernzerhof, M (1997) Generalized Gradient Approximation Made Simple. Physical Review Letters 78(7): 1396–1396.

    Article  CAS  Google Scholar 

  17. Kresse, G, Joubert, D (1999) From ultrasoft pseudopotentials to the projector augmented wave method. Physical Review B 59(3): 1758–1775.

    Article  CAS  Google Scholar 

  18. Methfessel, M, Paxton, AT (1989) High-precision sampling for Brillouin-zone integration in metals. Physical Review B 40(6): 3616–3621.

    Article  CAS  Google Scholar 

  19. Henkelman, G, Uberuaga, BP, Jónsson, H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22): 9901–9904.

    Article  CAS  Google Scholar 

  20. Browning, P, Potter, PE (1985) An assessment of the experimentally determined vapour pressures of the liquid alkali metals, In Ohse, RW (ed) Handbook of thermodynamic and transport properties of alkali metals, Blackwell Scientific Publications, Oxford, United Kingdom.

    Google Scholar 

  21. Žitko, R, Van Midden, HJP, Zupanič, E, Prodan, A, Makridis, SS, Niarchos, D, Stubos AK (2011) Hydrogenation properties of the TiBx structures. Int. J. Hydrogen Energy 36(19): 12268–12278.

    Article  Google Scholar 

  22. Saai, A, Wang, Z, Pezzotta, M, Friis, J, Ratvik, AP, Vullum, PE (2018) Multi-scale Modelling of Titanium Diboride Degradation Using Crystal Elasticity Model and Density Functional Theory. Light Metals 2018: submitted.

    Google Scholar 

  23. Jensen, MS, Einarsrud, M-A, Grande, T (2009) The Effect of Surface Oxides During Hot Pressing of TiB2. J. Am. Ceram. Soc. 92(3): 623–630.

    Article  CAS  Google Scholar 

  24. Wang, Z, Ratvik, AP, Grande, T, Selbach, SM (2015) Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations. RSC Adv. 5: 15985–15992.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was carried out in with support from Norsk Hydros Fond for SINTEF. Computational resources were provided by Sigma2 (The Norwegian Metacenter for High Performance Computing) through Project NN9264 K and ntnu243.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Friis, J., Ratvik, A.P. (2018). Transport of Sodium in TiB2 Materials Investigated by a Laboratory Test and DFT Calculations. In: Martin, O. (eds) Light Metals 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72284-9_173

Download citation

Publish with us

Policies and ethics