Skip to main content

Quantifying the Effects of Grain Refiner Addition on the Solidification of Fe-Rich Intermetallics in Al–Si–Cu Alloys Using In Situ Synchrotron X-Ray Tomography

  • Conference paper
  • First Online:
Light Metals 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

The presence of Fe-rich intermetallics, particularly β-Al5FeSi, in aluminium alloy cast components can often limit fatigue life. There is an on-going effort to control the formation of these detrimental phases through the additions of trace elements and grain refiners. However, the role of grain refinement on the formation of intermetallics is still unclear and conflicting results exist. To gain better understanding, in situ synchrotron X-ray tomographic microscopy experiments were performed on a commercial Al–Si–Cu alloy with grain refiner addition. Three-dimensional microstructure evolution and intermetallic precipitation were quantified. The influence of the β-intermetallics on the evolution of permeability during equiaxed dendritic solidification was also investigated numerically. The results illustrate that grain refinement affects α-Al grain structure as well as nucleation temperature of primary and intermetallic phases, but there is no evidence that it alters the precipitation sequence of intermetallics or their morphology. The simulation results reveal that intermetallics block interdendritic liquid flow and hence reduce permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yi JZ, Gao YX, Lee PD, Lindley TC, (2004) Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum–silicon alloy (A356–T6). Mater. Sci. Eng. A 386(1):396–407

    Article  Google Scholar 

  2. Li Z, Samuel AM, Samuel FH, Ravindran C, Valtierra S, Doty HW, (2004) Parameters controlling the performance of AA319-type alloys. Mater. Sci. Eng. A 367(1):96–110

    Article  Google Scholar 

  3. Mbuya TO, Odera BO, Ng’ang’a SP, (2003) Influence of iron on castability and properties of aluminium silicon alloys. Int. J. Cast Metals Res. 16

    Google Scholar 

  4. Roy N, Samuel AM, Samuel FH, (1996) Porosity formation in AI-9 Wt Pct Si-3 Wt Pct Cu alloy systems: Metallographic observations. Metall. Mater. Trans. A 27(2):415–429

    Article  Google Scholar 

  5. Samuel AM, Samuel FH, Villeneuve C, Doty HW, Valtierra S, (2001) Effect of trace elements on β-Al5FeSi characteristics, porosity and tensile properties of Al-Si-Cu (319) cast alloys. Int. J. Cast Metals Res. 14(2):97–120

    Article  CAS  Google Scholar 

  6. Puncreobutr C, Lee PD, Kareh KM, Connolley T, Fife JL, Phillion AB, (2014) Influence of Fe-rich intermetallics on solidification defects in Al–Si–Cu alloys. Acta Mater. 68: 42–51

    Article  CAS  Google Scholar 

  7. Dinnis CM, Taylor JA, Dahle AK, (2006) Iron-related porosity in Al–Si–(Cu) foundry alloys. Mater. Sci. Eng. A 425(1):286–296

    Article  Google Scholar 

  8. Dash M, Makhlouf M, (2001) Effect of key alloying elements on the feeding characteristics of aluminum–silicon casting alloys. J. Light Met. 1(4):251–265

    Article  Google Scholar 

  9. Hassani A, Ranjbar K, Sami S, (2012) Microstructural evolution and intermetallic formation in Al-8wt% Si-0.8wt% Fe alloy due to grain refiner and modifier additions. Int. J. Min. Met. Mater. 19(8):739–746

    Article  CAS  Google Scholar 

  10. Samuel FH, Samuel AM, Ouellet P, Doty HW, (1998) Effect of Mg and Sr additions on the formation of intermetallics in Al-6 Wt pct Si-3.5 Wt pct Cu-(0.45) to (0.8) Wt pct Fe 319-type alloys. Metall. Mater. Trans. A 29(12):2871–2884

    Article  Google Scholar 

  11. Shabestari SG, Mahmudi M, Emamy M, Campbell J, (2002) Effect of Mn and Sr on intermetallics in Fe-rich eutectic Al-Si alloy. Int. J. Cast Metals Res. 15(1):17–24

    Article  CAS  Google Scholar 

  12. Samuel AM, Samuel FH, Doty HW, (1996) Observations on the formation of β-Al5FeSi phase in 319 type Al-Si alloys. J. Mater. Sci. 31(20):5529–5539

    Article  CAS  Google Scholar 

  13. Timelli G, Camicia G, Ferraro S, (2014) Effect of Grain Refinement and Cooling Rate on the Microstructure and Mechanical Properties of Secondary Al-Si-Cu Alloys. J. Mater. Eng. Perform. 23(2):611–621

    Article  Google Scholar 

  14. Haro-Rodríguez S, Goytia-Reyes RE, Dwivedi DK, Baltazar-Hernández VH, Flores-Zúñiga H, Pérez-López MJ, (2011) On influence of Ti and Sr on microstructure, mechanical properties and quality index of cast eutectic Al–Si–Mg alloy. Mater. Design. 32:1865–1871

    Article  Google Scholar 

  15. Kumar S, O’Reilly KAQ, (2016) Influence of Al grain structure on Fe bearing intermetallics during DC casting of an Al-Mg-Si alloy. Mater. Charact. 120:311–322

    Article  CAS  Google Scholar 

  16. Smith T, O’Reilly K, Kumar S, Stone I, (2013) Influence of Grain-Refiner Addition on the Morphology of Fe-Bearing Intermetallics in a Semi-Solid Processed Al-Mg-Si Alloy. Metall. Mater. Trans. A 44(11):4866–4871

    Article  CAS  Google Scholar 

  17. Rakhmonov J, Timelli G, Bonollo F, Arnberg L, (2017) Influence of Grain Refiner Addition on the Precipitation of Fe-Rich Phases in Secondary AlSi7Cu3Mg Alloys. Int. J. Metalcast. 11(2):294–304

    Article  Google Scholar 

  18. Poirier DR, Ocansey P, (1993) Permeability for flow of liquid through equiaxial mushy zones. Mater. Sci. Eng. A 171(1):231–240

    Article  Google Scholar 

  19. Puncreobutr C, Phillion AB, Fife JL, Lee PD, (2014) Coupling in situ synchrotron X-ray tomographic microscopy and numerical simulation to quantify the influence of intermetallic formation on permeability in aluminium–silicon–copper alloys. Acta Mater. 64:316–325

    Article  CAS  Google Scholar 

  20. Eskin DG, Katgerman L, (2007) A Quest for a New Hot Tearing Criterion. Metall. Mater. Trans. A 38(7):1511–1519

    Article  Google Scholar 

  21. D’Elia F, Ravindran C, (2009) Influence of grain refinement on hot tearing in B206 and A319 aluminum alloys. T. Indian I. Metals 62(4):315–319

    Article  Google Scholar 

  22. Sweet L, Easton MA, Taylor JA, Grandfield JF, Davidson CJ, Lu L, Couper MJ, StJohn DH, (2013) Hot Tear Susceptibility of Al-Mg-Si-Fe Alloys with Varying Iron Contents. Metall. Mater. Trans. A 44(12):5396–5407

    Article  Google Scholar 

  23. Puncreobutr C, Phillion AB, Fife JL, Rockett P, Horsfield AP, Lee PD, (2014) In situ quantification of the nucleation and growth of Fe-rich intermetallics during Al alloy solidification. Acta Mater. 79:292–303

    Article  CAS  Google Scholar 

  24. Marone F, Stampanoni M, (2012) Regridding reconstruction algorithm for real-time tomographic imaging. J. Synchrotron Radiat. 19(6):1029–1037

    Article  CAS  Google Scholar 

  25. Bernard D, Nielsen Ø, Salvo L, Cloetens P, (2005) Permeability assessment by 3D interdendritic flow simulations on microtomography mappings of Al–Cu alloys. 392(1–2):112–120

    Google Scholar 

  26. Fuloria D, Lee PD, Bernard D, (2008) Microtomographic characterization of columnar Al–Cu dendrites for fluid flow and flow stress determination. Mat. Sci. Eng. A 494(1): 3–9

    Article  Google Scholar 

  27. Fan Z, Wang Y, Zhang Y, Qin T, Zhou XR, Thompson GE, Pennycook T, Hashimoto T, (2015) Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater. 84:292–304

    Article  CAS  Google Scholar 

  28. Wang J, Lee PD, Hamilton RW, Li M, Allison J, (2009) The kinetics of Fe-rich intermetallic formation in aluminium alloys: In situ observation. Scr. Mater. 60(7): 516–519

    Article  CAS  Google Scholar 

  29. Terzi S, Taylor JA, Cho YH, Salvo L, Suéry M, Boller E, Dahle AK, (2010) In situ study of nucleation and growth of the irregular α-Al/β-Al5FeSi eutectic by 3-D synchrotron X-ray microtomography. Acta Mater. 58(16):5370–5380

    Article  CAS  Google Scholar 

  30. Shabestari SG, Malekan M, (2010) Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J. Alloys Compd. 492(1–2):134–142

    Article  CAS  Google Scholar 

  31. Kumar S, Malisano J, Ito Y, O’Reilly KAQ (2017) Influence of Trace Element Additions on Fe Bearing Intermetallic Solidification of a 6063 Al Alloy. In: Ratvik AP (ed) Light Metals 2017. Cham; Springer, p 305–311

    Chapter  Google Scholar 

  32. Ehsan K, Daan MM, (2012) Permeability evolution during equiaxed dendritic solidification of Al–4.5 wt%Cu. Model. Simul. Mater. Sci. Eng. 20(3):035004

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Chulalongkorn Academic Advancement into its 2nd Century Project, Ratchadapisek Sompote Fund and EPSRC (EP/I02249X/1). They would also like to thank to Ford Motor Company and MXIF for materials and facilities support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chedtha Puncreobutr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chuaypradit, S., Puncreobutr, C., Phillion, A.B., Fife, J.L., Lee, P.D. (2018). Quantifying the Effects of Grain Refiner Addition on the Solidification of Fe-Rich Intermetallics in Al–Si–Cu Alloys Using In Situ Synchrotron X-Ray Tomography. In: Martin, O. (eds) Light Metals 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72284-9_139

Download citation

Publish with us

Policies and ethics