Skip to main content

Nickel Oxide Nanoparticles Induced Transcriptomic Alterations in HEPG2 Cells

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1048))

Abstract

Nickel oxide nanoparticles (NiO-NPs) are increasingly used and concerns have been raised on its toxicity. Although a few studies have reported the toxicity of NiO-NPs, a comprehensive understanding of NiO-NPs toxicity in human cells is still lagging. In this study, we integrated transcriptomic approach and genotoxic evidence to depict the mechanism of NiO-NPs toxicity in human hepatocellular carcinoma (HepG2) cells. DNA damage analysis was done using comet assay, which showed 26-fold greater tail moment in HepG2 cells at the highest concentration of 100 μg/ml. Flow cytometric analysis showed concentration dependent enhancement in intracellular reactive oxygen species (ROS). Real-time PCR analysis of apoptotic (p53, bax, bcl2) and oxidative stress (SOD1) genes showed transcriptional upregulation. Transcriptome analysis using qPCR array showed over expression of mRNA transcripts related to six different cellular pathways. Our data unequivocally suggests that NiO-NPs induces oxidative stress, DNA damage, apoptosis and transcriptome alterations in HepG2 cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Singh SP, Chinde S, Kamal SSK et al (2016) Genotoxic effects of chromium oxide nanoparticles and microparticles in Wistar rats after 28 days of repeated oral exposure. Environ Sci Pollut Res 23:3914–3924(2)

    Article  CAS  Google Scholar 

  2. Tomankova K, Horakova J, Harvanova M et al (2015) Cytotoxicity, cell uptake and microscopic analysis of titanium dioxide and silver nanoparticles in vitro. Food Chem Toxicol 82:106–115

    Article  CAS  PubMed  Google Scholar 

  3. Kim T, Hyeon T (2014) Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 25:012001

    Article  PubMed  Google Scholar 

  4. Beaudrie CE, Kandlikar M, Satterfield T (2013) From cradle-to-grave at the nanoscale: gaps in U.S. regulatory oversight along the nanomaterial life cycle. Environ Sci Technol 47(11):5524–5534

    Article  CAS  PubMed  Google Scholar 

  5. Nel A, Xia T, Mädler L et al (2006) Toxic potential of materials at the nano level. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  6. Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  7. Salimi A, Sharifi E, Noorbakhsh A et al (2007) Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide. Biophys Chem 125(2–3):540–548

    Article  CAS  PubMed  Google Scholar 

  8. Mu Y, Jia D, He Y (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26(6):2948–2952

    Article  CAS  PubMed  Google Scholar 

  9. Rao KV, Sunandana CS (2008) Effect of fuel to oxidizer ratio on the structure, micro structure and EPR of combustion synthesized NiO nanoparticles. J Nanosci Nanotechnol 8(8):4247–4253

    Article  CAS  PubMed  Google Scholar 

  10. Wiesner MR, Lowry GV, Alvarez P et al (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  CAS  PubMed  Google Scholar 

  11. Bhaduri GA, Siller L (2012) Carbon capture. United Kingdom Patent Application GB1208511.4

    Google Scholar 

  12. Bhaduri GA, Siller L (2013) Nickel nanoparticles catalyse reversible hydration of carbon dioxide for mineralization carbon capture and storage. Cat Sci Technol 3:1234e1239

    Google Scholar 

  13. Cameron KS, Buchner V, Tchounwou PB (2011) Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review. Rev Environ Health 26(2):81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cho WS, Duffin R, Poland CA et al (2010) Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 118(12):1699–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu S, Duffin R, Poland C et al (2009) Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect 117(2):241–247

    Article  CAS  PubMed  Google Scholar 

  16. Oyabu T, Ogami A, Morimoto Y et al (2007) Biopersistence of inhaled nickel oxide nanoparticles in rat lung. Inhal Toxicol 19(1):55–58

    Article  CAS  PubMed  Google Scholar 

  17. Nishi K, Morimoto Y, Ogami A et al (2009) Expression of cytokine-induced neutrophil chemoattractant in rat lungs by intratracheal instillation of nickel oxide nanoparticles. Inhal Toxicol 21(12):1030–1039

    Article  CAS  PubMed  Google Scholar 

  18. Lee S, Hwang SH, Jeong J et al (2016) Nickel oxide nanoparticles can recruit eosinophils in the lungs of rats by the direct release of intracellular eotaxin. Part Fibre Toxicol 13(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jeong J, Kim J, Seok SH et al (2016) Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles. Arch Toxicol 90(4):817–828

    Article  CAS  PubMed  Google Scholar 

  20. Magaye R, Gu Y, Wang Y et al (2016) In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles. J Mol Histol 47(3):273–286

    Article  CAS  PubMed  Google Scholar 

  21. Pietruska JR, Liu X, Smith A et al (2011) Bioavailability, intracellular mobilization of nickel, and HIF-1alpha activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci 124(1):138–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saquib Q et al (2017) p53, MAPKAPK-2 and caspases regulate nickel oxide nanoparticles induce cell death and cytogenetic anomalies in rats. Int J Biol Macromol.: pii: S0141-8130(17)31498-8. https://doi.org/10.1016/j.ijbiomac.2017.07.032

  23. Dumala N et al (2017) Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure. Mutagenesis. https://doi.org/10.1093/mutage/gex007

  24. Kovriznych JA, Sotnikova R, Zeljenkova D et al (2014) Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio. Interdiscip Toxicol 7(1):23–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanold JM, Wang J, Brümmer F et al (2016) Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus. Environ Pollut 212:224–229

    Article  CAS  PubMed  Google Scholar 

  26. Duan WX, He MD, Mao L et al (2015) NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells. Toxicol Appl Pharmacol 286(2):80–91

    Article  CAS  PubMed  Google Scholar 

  27. Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332

    Article  PubMed  Google Scholar 

  28. Abudayyak M, Guzel E, Özhan G (2017) Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells. Neurochem Int 108:7–14. https://doi.org/10.1016/j.neuint.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  29. Umaralikhana L, Jaffar MJM (2016) Antibacterial and anticancer properties of NiO nanoparticles by co-precipitation method. J Adv App Sci Res 1(4):24–35

    Google Scholar 

  30. Lu S et al (2015) Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles. Part Fibre Toxicol 12:5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ahamed M, Ali D, Alhadlaq HA et al (2013) Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere 93(10):2514–2522

    Article  CAS  PubMed  Google Scholar 

  32. Guillouzo A et al (2007) The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact 168:66–73

    Article  CAS  PubMed  Google Scholar 

  33. Madan A et al (2003) Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos 31:421–431

    Article  CAS  PubMed  Google Scholar 

  34. Sassa S, Sugita O, Galbraith RA et al (1987) Drug metabolism by the human hepatoma cell, HepG2. Biochem Biophys Res Commun 143:52–57

    Article  CAS  PubMed  Google Scholar 

  35. Gerets HHJ et al (2009) Selection of cytotoxicity markers for the screening of new chemical entities in a pharmaceutical context: a preliminary study using a multiplexing approach. Toxicol In Vitro 23:319–332

    Article  CAS  PubMed  Google Scholar 

  36. Liu X et al (2014) The role of lysosomes in BDE 47-mediated activation of mitochondrial apoptotic pathway in HepG2 cells. Chemosphere 124:10–21

    Article  PubMed  Google Scholar 

  37. Capasso L, Camatini M, Gualtieri M (2014) Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett 226(1):28–34

    Article  CAS  PubMed  Google Scholar 

  38. Saquib Q, Al-Khedhairy AA, Ahmad J et al (2013) Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells. Toxicol Appl Pharmacol 273(2):289–297

    Article  CAS  PubMed  Google Scholar 

  39. Saquib Q, Al-Khedhairy AA, Siddiqui MA et al (2012) Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro 26(2):351–361

    Article  CAS  PubMed  Google Scholar 

  40. Kawanishi S, Oikawa S, Inoue S et al (2002) Distinct mechanisms of oxidative DNA damage induced by carcinogenic nickel subsulfide and nickel oxides. Environ Health Perspect 110:789–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu ZG (2005) Molecular mechanism of TNF signaling and beyond. Cell Res 15(1):24–27

    Article  CAS  PubMed  Google Scholar 

  42. Luzio A, Monteiro SM, Fontainhas-Fernandes AA et al (2013) Copper induced upregulation of apoptosis related genes in zebrafish (Danio rerio) gill. Aquat Toxicol 128–129:183–189

    Article  PubMed  Google Scholar 

  43. Kang JX, Liu J, Wang J et al (2005) The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by upregulation of interferon-beta and TNF-alpha in human breast cancer cells. Carcinogenesis 26(11):1934–1939

    Article  CAS  PubMed  Google Scholar 

  44. Han MH, Kim GY, Yoo YH et al (2013) Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicol Lett 220(2):157–166

    Article  CAS  PubMed  Google Scholar 

  45. Frank MB, Yang Q, Osban J et al (2009) Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. BMC Complement Altern Med 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  46. Setyawati MI, Tay CY, Leong DT (2013) Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials 34(38):10133–10142

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Stavchansky S, Kerwin SM et al (2010) Structure-activity relationships in the cytoprotective effect of caffeic acid phenethyl ester (CAPE) and fluorinated derivatives: effects on heme oxygenase-1 induction and antioxidant activities. Eur J Pharmacol 635(1–3):16–22

    Article  CAS  PubMed  Google Scholar 

  48. Lee JK, Sayers BC, Chun KS et al (2012) Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP kinase-dependent and-independent mechanisms in mouse RAW264.7 macrophages. Part Fibre Toxicol 9:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang H, Filipovic Z, Brown D et al (2003) Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther 2(10):1023–1029

    CAS  PubMed  Google Scholar 

  50. Wang X, Bynum JA, Stavchansky S et al (2014) Cytoprotection of human endothelial cells against oxidative stress by 1-(2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl)imidazole (CDDO-Im): application of systems biology to understand the mechanism of action. Eur J Pharmacol 734:122–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quaiser Saquib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saquib, Q. et al. (2018). Nickel Oxide Nanoparticles Induced Transcriptomic Alterations in HEPG2 Cells. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_10

Download citation

Publish with us

Policies and ethics