Skip to main content

Fertilization Strategies Based on Climate Information to Enhance Food Security Through Improved Dryland Cereals Production

  • Living reference work entry
  • First Online:
Handbook of Climate Change Resilience

Abstract

Rainfall uncertainty and nutrient deficiency affect sorghum production in Sahel. This study aimed at (i) determining the responses (varieties*water*nitrogen) of various West-African sorghum (Sorghum bicolor L. Moench) varieties to the application of fertilizer (NPK and urea) at selected growing stages according to water regime (irrigated or not, different rainfall patterns) and (ii) simulating them to define alternative fertilization strategies. This chapter proposes alternative fertilization strategies in line with rainfall patterns. Split plot experiments with four replications were carried out in two locations (Senegal), with four improved sorghum varieties (Fadda, IS15401, Soumba and 621B). Treatments were T1, no fertilizer; T2 = 150 kg/ha of NPK (15-15-15) at emergence +50 kg/ha of urea (46%) at tillering +50 Kg/ha of urea at stem extension; T3 = half rate of T2 applied at the same stages; T4 = 150 kg/ha of NPK + 50 kg/ha of urea at stem extension +50 kg/ha of urea at heading, and T5 = half rate of T4 applied at the same stages. Plant height, leaf number, grain yield, and biomass were significantly affected by the timing and rate of fertilizers. Grain yield were affected by water*nitrogen and nitrogen*variety interactions. It varied from 2111 to 261 kg/ha at “Nioro du Rip” and from 1670 to 267 kg/ha at “Sinthiou Malème”. CERES-Sorghum model overestimated late fertilizer grain yields. To achieve acceptable grain yield, fertilizers application should be managed regarding weather.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almodares A, Hadi MR, Ranjbar M, Taheri R (2007) The effect of nitrogen treatments, cultivars and harvest stages on stalk yield and sugar content in sweet sorghum. Asian J Plant Sci 6:423–426. https://doi.org/10.3923/ajps.2007.423.426

    Article  Google Scholar 

  • Amiri M, Mojaddam M, Shokouhfar A, Bakhtiarinejad N (2014) The effect of different levels and time of nitrogen application on grain yield, some physiological traits and nitrogen use efficacy in grain sorghum. Indian J Fundam Appl Life Sci 4:223–227

    Google Scholar 

  • Bezançon G, Renno J-F, Kumar KA (1997) Le mil. In: Hamon S (ed) L’amélioration des plantes tropicales. CIRAD/ORSTOM, Paris, pp 457–482

    Google Scholar 

  • Blandino M, Vaccino P, Reyneri A (2015) Late-season nitrogen increases improver common and durum wheat quality. Agron J 107:680–690. https://doi.org/10.2134/agronj14.0405

    Article  CAS  Google Scholar 

  • Bodson B, Vancutsem F, Destain J et al. (2003) Evolution du fractionnement de la fumure azotée. In: CRA (ed) Livre Blanc “Céréales.” FUSAGx, Gembloux (Belgique), pp 1–8

    Google Scholar 

  • Brassard M (2007) Développement d’outils diagnostiques de la nutrition azotée du maïs-grain pour une gestion optimale de l’engrais azoté. Université de Laval, Québec

    Google Scholar 

  • Casenave A, Valentin C (1989) Les états de surface de la zone sahélienne : influence sur l’infiltration, ORSTOM. Institut français de recherche scientifique pour le développement en Coopération, Paris

    Google Scholar 

  • Defrance D, Ramstein G, Charbit S et al (2017) Consequences of rapid ice-sheet melting on the Sahelian population vulnerability. Proc Natl Acad Sci U S A 114:6533–6538. https://doi.org/10.1073/pnas/.1619358114

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (1999) Yield and yield components of lowland rice as influenced by timing of nitrogen fertilization. J Plant Nutr 22:23–32. https://doi.org/10.1080/01904169909365603

    Article  CAS  Google Scholar 

  • Gnansounoua E, Dauriat A, Wyman C (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002. https://doi.org/10.1016/j.biortech.2004.09.015

    Article  CAS  Google Scholar 

  • Gueye T, Sine B, Cisse N et al (2016) Characterization of phenotypic diversity of Sorghum collection for developing breeding material. Int J Sci 5:38–48. https://doi.org/10.18483/ijSci.931

    Article  Google Scholar 

  • Hansen JW (2002) Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges. Agric Syst 74:309–330. https://doi.org/10.1016/S0308-521X(02)00043-4

    Article  Google Scholar 

  • Ingram KT, Roncoli MC, Kirshen PH (2002) Opportunities and constraints for farmers of west Africa to use seasonal precipitation forecasts with Burkina Faso as a case study. Agric Syst 74:331–349. https://doi.org/10.1016/S0308-521X(02)00044-6

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptations and vulnerability. Contribution of working group II to the fourth assessment of the Intergovernmental Panel on Climate Change. Cambridge

    Google Scholar 

  • Jones JW, Hoogenboom G, Porter CH et al (2003) The DSSAT cropping system model. Eur J Agron 18:235–265

    Article  Google Scholar 

  • Keating BA, Wafula BM, Watiki JM, Karanja DR (1993) Dealing with climatic risk in agricultural research – a case study modelling maize in semi-arid Kenya. In: Craswell ET, Simpson J (eds) Soil fertility and climatic constraints in dryland agriculture. ACIAR, Harare, pp 105–114

    Google Scholar 

  • Kulkarni DP, Almodares A, Somani RB (1995) Sweet sorghum – supplementary sugar crop in Iran. Ann Plant Physiol 9:90–94

    Google Scholar 

  • Legwaila GM, Balole TV, Karikari SK (2003) Review of sweet sorghum: a potential cash and forage crop in Botswana. J Agric For 12:5–14. https://doi.org/10.4314/uniswa.v12i1.4631

    Article  Google Scholar 

  • McCown RL, Wafula BM, Mohammed L et al (1991) Assessing the value of a seasonal rainfall predictor to agronomic decisions: the case of response farming in Kenya. In: Muchow RC, Bellamy JA (eds) Climatic risk in crop production. Models and management for the semi-arids tropics and subtropics. CAB Internatioanl, Wallingford, pp 383–409

    Google Scholar 

  • Perez CM, Juliano B, Liboon SP et al (1996) Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem 73:556–560

    CAS  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rötter R, Van Keulen H (1997) Variations in yield response to fertilizer application in the tropics: II. Risks and opportunities for smallholders cultivating maize on Kenya’s arable land. Agric Syst 53:69–95. https://doi.org/10.1016/S0308-521X(96)00037-6

    Article  Google Scholar 

  • Roudier P, Sultan B, Quirion P et al (2012) An ex-ante evaluation of the use of seasonal climate forecasts for millet growers in SW Niger. Int J Climatol 32:759–771. https://doi.org/10.1002/joc.2308

    Article  Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci U S A 104:19703–19708. https://doi.org/10.1073/pnas.0701976104

    Article  Google Scholar 

  • Sultan B, Gaetani M (2016) Agriculture in West Africa in the twenty-first century: climate change and impacts scenarios, and potential for adaptation. Front Plant Sci 7:1–20. https://doi.org/10.3389/fpls.2016.01262

    Article  Google Scholar 

  • Sultan B, Barbier B, Fortilus J et al (2010) Estimating the potential economic value of seasonal forecasts in West Africa: a long-term ex-ante assessment in Senegal. Am Meteorol Soc 2:69–87. https://doi.org/10.1175/2009WCAS1022.1

    Article  Google Scholar 

  • Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci U S A 104:19686–19690. https://doi.org/10.1073/pnas.0701728104

    Article  Google Scholar 

  • Wuest SB, Cassman KG (1992) Fertilizer-nitrogen use efficiency of irrigated wheat: I. Uptake efficiency of preplant versus late-season application. Agron J 84:682–688

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komla Kyky Ganyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ganyo, K., Muller, B., Guissé, A., Adam, M. (2018). Fertilization Strategies Based on Climate Information to Enhance Food Security Through Improved Dryland Cereals Production. In: Leal Filho, W. (eds) Handbook of Climate Change Resilience. Springer, Cham. https://doi.org/10.1007/978-3-319-71025-9_90-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71025-9_90-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71025-9

  • Online ISBN: 978-3-319-71025-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics