Skip to main content

Erasure Codes for Reliable Communication in Internet of Things (IoT) Embedded with Wireless Sensors

  • Chapter
  • First Online:
Book cover Cognitive Computing for Big Data Systems Over IoT

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 14 ))

Abstract

With billions of devices adding up to the internet, broadly termed as Internet of Things (IoT), the need for reliable communication, distributed storage and computation has seamlessly increased. At this juncture, need for reliable communication, distributed storage and computation, adoption of error correcting codes and erasure codes plays a significant role. In this chapter, we give an overview of construction of erasure codes required for reliable communication with emphasis on Internet of Things (IoT) communication which have wireless sensors or sensor networks as its core. Wireless sensors form an integral part of Internet of Things (IoT) devices bridging the virtual world and the real world. Achieving reliability in such networks is highly desirable due to their broad range of applications. The discussed erasure codes in this chapter can be directly employed or with little modification in the context of reliable communication in Internet of Things. In this chapter, the two methods of information transmission, end-to-end transmission and hop-by-hop transmission, prevalent in digital communication scenario is discussed in detail with emphasis on with and without erasure coding. Also, the erasure codes used extensively in the context of achieving reliability in wireless sensor communication namely Reed-Solomon codes, Fountain codes and Decentralized Erasure codes are discussed and compared. This chapter serves as a starting point for researchers interested in working on reliability aspects of communication in Internet of Things embedded with wireless sensors and cyber physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)

    Article  Google Scholar 

  3. Zheng, X.L., Wan, M.: A survey on data dissemination in wireless sensor networks. J. Comput. Sci. Technol. 29(3), 470–486 (2014)

    Article  MathSciNet  Google Scholar 

  4. Albano, M., Chessa, S.: Replication vs erasure coding in data centric storage for wireless sensor networks. Comput. Netw. 77, 42–55 (2015)

    Article  Google Scholar 

  5. Mahmood, M.A., Seah, W.K., Welch, I.: Reliability in wireless sensor networks: a survey and challenges ahead. Comput. Netw. 79, 166–187 (2015)

    Article  Google Scholar 

  6. Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley-Interscience (2005)

    Google Scholar 

  7. Heimlicher, S., Karaliopoulos, M., Levy, H., May, M.: End-to-end vs. hop-by-hop transport under intermittent connectivity. In: Proceedings of the 1st International Conference on Autonomic Computing and Communication Systems, Autonomics ’07, pp. 20:1–20:10. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium (2007). http://dl.acm.org/citation.cfm?id=1365562.1365589

  8. Heimlicher, S., Nuggehalli, P., May, M.: End-to-end vs. hop-by-hop transport. SIGMETRICS Perform. Eval. Rev. 35(3), 59–60 (2007)

    Article  Google Scholar 

  9. Jing, C., Lixiang, L., Xiaohui, H., Fanjiang, X.: Hop-by-hop transport for satellite networks. In: Aerospace Conference, 2009, IEEE, pp. 1–7. IEEE (2009)

    Google Scholar 

  10. Ahlswede, R., Cai, N., Li, S.Y., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dimakis, A.G., Prabhakaran, V., Ramchandran, K.: Decentralized erasure codes for distributed networked storage. IEEE/ACM Trans. Netw. (TON) 14(SI), 2809–2816 (2006)

    Google Scholar 

  12. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A.: Efficient erasure correcting codes. IEEE Trans. Inf. Theory 47(2), 569–584 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A., Stemann, V.: Practical loss-resilient codes. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 150–159. ACM (1997)

    Google Scholar 

  14. MacKay, D.J.: Fountain codes. IEE Proc.-Commun. 152(6), 1062–1068 (2005)

    Article  Google Scholar 

  15. Shokrollahi, A.: Raptor codes. IEEE Trans. Inf. Theory 52(6), 2551–2567 (2006). https://doi.org/10.1109/TIT.2006.874390

  16. Maymounkov, P.: Online codes. Technical report, New York University, Tech. rep. (2002)

    Google Scholar 

  17. Luby, M.: Lt codes. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings, pp. 271–280 (2002). https://doi.org/10.1109/SFCS.2002.1181950

  18. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, S., Fonseca, R., Culler, D.: Reliable transfer on wireless sensor networks. In: 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004, pp. 449–459. IEEE (2004)

    Google Scholar 

  20. Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach to reliable distribution of bulk data. ACM SIGCOMM Comput. Commun. Rev. 28(4), 56–67 (1998)

    Article  Google Scholar 

  21. Stockhammer, T., Shokrollahi, A., Watson, M., Luby, M., Gasiba, T.: Application layer forward error correction for mobile multimedia broadcasting. In: Handbook of Mobile Broadcasting: DVB-H, DMB, ISDB-T and Media Flo, pp. 239–280 (2008)

    Google Scholar 

  22. Shokrollahi, A., Luby, M., et al.: Raptor codes. Found. Trends® Commun. Inf. Theory 6(3–4), 213–322 (2011)

    Google Scholar 

  23. Dimakis, A.G., Prabhakaran, V., Ramchandran, K.: Distributed data storage in sensor networks using decentralized erasure codes. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004, vol. 2, pp. 1387–1391. IEEE (2004)

    Google Scholar 

  24. Dimakis, A.G., Prabhakaran, V., Ramchandran, K.: Ubiquitous access to distributed data in large-scale sensor networks through decentralized erasure codes. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, p. 15. IEEE Press (2005)

    Google Scholar 

  25. Al-Awami, L., Hassanein, H.: Energy efficient data survivability for WSNs via decentralized erasure codes. In: 2012 IEEE 37th Conference on Local Computer Networks (LCN), pp. 577–584. IEEE (2012)

    Google Scholar 

  26. Al-Awami, L., Hassanein, H.S.: Distributed data storage systems for data survivability in wireless sensor networks using decentralized erasure codes. Comput. Netw. 97, 113–127 (2016)

    Article  Google Scholar 

  27. Lin, H.Y., Tzeng, W.G.: A secure decentralized erasure code for distributed networked storage. IEEE Trans. Parallel Distrib. Syst. 21(11), 1586–1594 (2010)

    Article  Google Scholar 

  28. Fragouli, C., Soljanin, E., et al.: Network coding applications. Found. Trends® Netw. 2(2), 135–269 (2008)

    Google Scholar 

  29. Seah, W.K., Tan, H.P.: Multipath virtual sink architecture for wireless sensor networks in harsh environments. In: Proceedings of the First International Conference on Integrated Internet Ad hoc and Sensor Networks, p. 19. ACM (2006)

    Google Scholar 

  30. Wu, C., Ohzahata, S., Kato, T.: An adaptive redundancy-based mechanism for fast and reliable data collection in wsns. In: 2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 347–352. IEEE (2012)

    Google Scholar 

  31. Yang, Y., Wählisch, M., Zhao, Y., Kyas, M.: Raid the wsn: packet-based reliable cooperative diversity. In: 2012 IEEE International Conference on Communications (ICC), pp. 371–375. IEEE (2012)

    Google Scholar 

  32. Marchi, B., Grilo, A., Nunes, M.: DTSN: distributed transport for sensor networks. In: 12th IEEE Symposium on Computers and Communications, 2007. ISCC 2007, pp. 165–172. IEEE (2007)

    Google Scholar 

  33. Wen, H., Lin, C., Ren, F., Zhou, J., Yue, Y., Huang, X.: Retransmission or redundancy: transmission reliability study in wireless sensor networks. Sci. Chin. Inf. Sci. 55(4), 737–746 (2012)

    Article  MathSciNet  Google Scholar 

  34. Ali, S., Fakoorian, A., Taheri, H.: Optimum reed-solomon erasure coding in fault tolerant sensor networks. In: 4th International Symposium on Wireless Communication Systems, 2007. ISWCS 2007, pp. 6–10. IEEE (2007)

    Google Scholar 

  35. Gehrke, J., Madden, S.: Query processing in sensor networks. IEEE Pervasive Comput. 3(1), 46–55 (2004)

    Article  Google Scholar 

  36. Trivedi, K.S.: Probability & Statistics with Reliability, Queuing and Computer Science Applications. Wiley (2008)

    Google Scholar 

  37. Srouji, M.S., Wang, Z., Henkel, J.: Rdts: A reliable erasure-coding based data transfer scheme for wireless sensor networks. In: Proceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed Systems, pp. 481–488. IEEE Computer Society (2011)

    Google Scholar 

  38. Kumar, R., Paul, A., Ramachandran, U., Kotz, D.: On improving wireless broadcast reliability of sensor networks using erasure codes. In: International Conference on Mobile Ad-hoc and Sensor Networks, pp. 155–170. Springer (2006)

    Google Scholar 

  39. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  40. Moulin, P., Koetter, R.: Data-hiding codes. Proceedings of the IEEE 93(12), 2083–2126 (2005)

    Article  Google Scholar 

  41. Maurya, P.K., Pal, J., Bagchi, S.: A coding theory based ultralightweight RFID authentication protocol with CRC. Wireless Personal Communications, pp. 1–10 (2017). https://doi.org/10.1007/s11277-017-4546-z. http://dx.doi.org/10.1007/s11277-017-4546-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Selvakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavan Kumar, C., Selvakumar, R. (2018). Erasure Codes for Reliable Communication in Internet of Things (IoT) Embedded with Wireless Sensors. In: Sangaiah, A., Thangavelu, A., Meenakshi Sundaram, V. (eds) Cognitive Computing for Big Data Systems Over IoT. Lecture Notes on Data Engineering and Communications Technologies, vol 14 . Springer, Cham. https://doi.org/10.1007/978-3-319-70688-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70688-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70687-0

  • Online ISBN: 978-3-319-70688-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics