Skip to main content

Natural gas extraction and artificial gas injection experiments in Opalinus Clay, Mont Terri rock laboratory (Switzerland)

  • Chapter
  • First Online:

Part of the book series: Swiss Journal of Geosciences Supplement ((SWISSGEO,volume 5))

Abstract

Two experiments have been installed at Mont Terri in 2004 and 2009 that allowed gas circulation within a borehole at a pressure between 1 and 2 bar. These experiments made it possible to observe the natural gases that were initially dissolved in pore-water degassing into the borehole and to monitor their content evolution in the borehole over several years. They also allowed for inert (He, Ne) and reactive (H2) gases to be injected into the borehole with the aim either to determine their diffusion properties into the rock pore-water or to evaluate their removal reaction kinetics. The natural gases identified were CO2, light alkanes, He, and more importantly N2. The natural concentration of four gases in Opalinus Clay porewater was evaluated at the experiment location: N2 2.2 mmol/L ± 25%, CH4 0.30 mmol/L ± 25%, C2H6 0.023 mmol/L ± 25%, C3H8 0.012 mmol/L ± 25%. Retention properties of methane, ethane, and propane were estimated. Ne injection tests helped to characterize rock diffusion properties regarding the dissolved inert gases. These experimental results are highly relevant towards evaluating how the fluid composition could possibly evolve in the drifts of a radioactive waste disposal facility.

Editorial handling: P. Bossart and A. G. Milnes.

This is paper #19 of the Mont Terri Special Issue of the Swiss Journal of Geosciences (see Bossart et al. 2017, Table 3 and Fig. 7).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Appelo, C. A. J., Van Loon, L. R., & Wersin, P. (2010). Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus Clay. Geochimica et Cosmochimica Acta, 74(4), 1201–1219.

    Google Scholar 

  • Appelo, C. A. J., & Wersin, P. (2007). Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus Clay. Environmental Science and Technology, 41(14), 5002–5007.

    Google Scholar 

  • Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P., Dewonck, S., Fukaya, M., Herfort, M., Jensen, M., Matray, J-M., Mayor, J. C., Moeri, A., Oyama, T., Schuster, K., Shigeta, N., Vietor, T., & Wieczorek, K. (2017). Mont Terri rock laboratory, years: Introduction, geology and overview of papers included in the Special Issue. Swiss Journal of Geosciences, 110. https://doi.org/10.1007/s00015-016-0236-1 (this issue).

  • Boudreau, B. P. (1997). Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Berlin: Springer.

    Google Scholar 

  • Cailteau, C., de Donato, P., Pironon, J., Vinsot, A., Garnier, C., & Barres, O. (2011a). In situ gas monitoring in clay rocks: Mathematical developments for CO2 and CH4 partial pressure determination under non-controlled pressure conditions using FT-IR spectrometry. Analytical Methods, 3(4), 888–895.

    Google Scholar 

  • Cailteau, C., Pironon, J., de Donato, P., Vinsot, A., Fierz, T., Garnier, C., et al. (2011b). FT-IR metrology aspects for on-line monitoring of CO2 and CH4 in underground laboratory conditions. Analytical Methods, 3(4), 877–887.

    Google Scholar 

  • Delay, J., Bossart, P., Ling, L. X., Blechschmidt, I., Ohlsson, M., Vinsot, A., et al. (2014). Three decades of underground research laboratories: What have we learned? Geological Society, London, Special Publications, 400(1), 7–32.

    Google Scholar 

  • Gaucher, E. C., Tournassat, C., Pearson, F. J., Blanc, P., Crouzet, C., Lerouge, C., et al. (2009). A robust model for pore-water chemistry of clayrock. Geochimica et Cosmochimica Acta, 73(21), 6470–6487.

    Google Scholar 

  • Grishina, S., Pironon, J., Mazurov, M., Sergey, G., Pustilnikov, A., Fon-Der-Flaas, G., et al. (1998). Organic inclusions in salt. Part 3. Oil and gas inclusions in Cambrian evaporite deposit from East Siberia. A contribution to the understanding of nitrogen generation in evaporites. Organic Geochemistry, 28(5), 297–310.

    Google Scholar 

  • Hayduk, W., & Laudie, H. (1974). Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE Journal, 20(3), 611–615.

    Google Scholar 

  • Jacops, E., Volckaert, G., Maes, N., Weetjens, E., & Govaerts, J. (2013). Determination of gas diffusion coefficients in saturated porous media: He and CH4 diffusion in Boom Clay. Applied Clay Science, 83, 217–223.

    Google Scholar 

  • Jähne, B., Heinz, G., & Dietrich, W. (1987). Measurement of the diffusion coefficients of sparingly soluble gases in water. Journal of Geophysical Research: Oceans, 92(C10), 10767–10776.

    Google Scholar 

  • Krooss, B. M., Friberg, L., Gensterblum, Y., Hollenstein, J., Prinz, D., & Littke, R. (2005). Investigation of the pyrolytic liberation of molecular nitrogen from Palaeozoic sedimentary rocks. International Journal of Earth Sciences, 94(5), 1023–1038.

    Google Scholar 

  • Krooss, B. M., Littke, R., Müller, B., Frielingsdorf, J., Schwochau, K., & Idiz, E. F. (1995). Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations. Chemical Geology, 126(3), 291–318.

    Google Scholar 

  • Lerouge, C., Blessing, M., Flehoc, C., Gaucher, E. C., Henry, B., Lassin, A., et al. (2015). Dissolved CO2 and alkane gas in clay formations. Procedia Earth and Planetary Science, 13, 88–91.

    Google Scholar 

  • Liss, P. S., & Slater, P. G. (1974). Flux of gases across the air–sea interface. Nature, 247(5438), 181–184.

    Google Scholar 

  • Lundy, M., Garitte, B., Lettry, Y., & Vinsot, A. (2013). Experimental design for in situ characterization of the Callovo-Oxfordian pore-water composition at 85 °C. Procedia Earth and Planetary Science, 7, 533–536.

    Google Scholar 

  • Lundy, M., & Vinsot, A. (2010). Implementation of Raman and mass spectrometry for on line measurement of gas composition in boreholes. In Andra (Ed.), Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, 4th International Meeting, Nantes, France, March 29–April 1st, 2010, Abstracts (pp. 535–536).

    Google Scholar 

  • Mazurek, M., Alt-Epping, P., Bath, A., Gimmi, T., Niklaus Waber, H., Buschaert, S., et al. (2011). Natural tracer profiles across argillaceous formations. Applied Geochemistry, 26(7), 1035–1064.

    Google Scholar 

  • Mazurek, M., Gautschi, A., Marschall, P., Vigneron, G., Lebon, P., & Delay, J. (2008). Transferability of geoscientific information from various sources (study sites, underground rock laboratories, natural analogues) to support safety cases for radioactive waste repositories in argillaceous formations. Physics and Chemistry of the Earth, Parts A/B/C, 33, S95–S105.

    Google Scholar 

  • Mazurek, M., Hurford, A. J., & Leu, W. (2006). Unravelling the multi-stage burial history of the Swiss Molasse Basin: Integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis. Basin Research, 18(1), 27–50.

    Google Scholar 

  • McCollom, T. M., Lollar, B. S., Lacrampe-Couloume, G., & Seewald, J. S. (2010). The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochimica et Cosmochimica Acta, 74(9), 2717–2740.

    Google Scholar 

  • Mills, R., & Harris, K. R. (1976). The effect of isotopic substitution on diffusion in liquids. Chemical Society Reviews, 5, 215–231.

    Google Scholar 

  • Molyneux, P. (2014). Octanol/water partition coefficients Kow: A critical examination of the value of the methylene group contribution to log Kow for homologous series of organic compounds. Fluid Phase Equilibria, 368, 120–141.

    Google Scholar 

  • Nussbaum, C., Kloppenburg, A., Caër, T., & Bossart, P. (2017). Tectonic evolution around the Mont Terri rock laboratory, northwestern Swiss Jura: constraints from kinematic forward modelling. Swiss Journal of Geosciences, 110. https://doi.org/10.1007/s00015-016-0248-x (this issue).

  • Ohsumi, T., & Horibe, Y. (1984). Diffusivity of He and Ar in deepsea sediments. Earth and Planetary Science Letters, 70(1), 61–68.

    Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US geological survey techniques and methods, 6-A43.

    Google Scholar 

  • Pearson, F. J., Arcos, D., Bath, A., Boisson, J. Y., Fernandez, A. M., GÀÀÀÀäbler, H.-E., Gaucher, E., Gautschi, A., Griffault, L., Henàn, P. W., & Wabe H. N. (2003). Mont Terri Project-Geochemistry of water in the Opalinus Clay Formation at the Mont Terri rock laboratory. Bern: OFEG Report, Geology Serie, No. 5. Federal Office of Topography (swisstopo), Wabern, Switzerland. http://www.mont-terri.ch

  • Pearson, F. J., Tournassat, C., & Gaucher, E. C. (2011). Biogeochemical processes in a clay formation in situ experiment: Part E—Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland. Applied Geochemistry, 26(6), 990–1008.

    Google Scholar 

  • Prinzhofer, A., Girard, J. P., Buschaert, S., Huiban, Y., & Noirez, S. (2009). Chemical and isotopic characterization of hydrocarbon gas traces in porewater of very low permeability rocks: The example of the Callovo-Oxfordian argillites of the eastern part of the Paris Basin. Chemical Geology, 260(3), 269–277.

    Google Scholar 

  • Prinzhofer, A., & Pernaton, É. (1997). Isotopically light methane in natural gas: bacterial imprint or diffusive fractionation? Chemical Geology, 142(3), 193–200.

    Google Scholar 

  • Rübel, A. P., Sonntag, C., Lippmann, J., Pearson, F. J., & Gautschi, A. (2002). Solute transport in formations of very low permeability: Profiles of stable isotope and dissolved noble gas contents of pore water in the Opalinus Clay, Mont Terri, Switzerland. Geochimica et Cosmochimica Acta, 66(8), 1311–1321.

    Google Scholar 

  • Scharlin, P., Battino, R., Silla, E., Tuii, I., & Pascual-Ahuir, J. L. (1998). Solubility of gases in water: Correlation between solubility and the number of water molecules in the first solvation shell. Pure Applied Chemistry, 70(10), 1895–1904.

    Google Scholar 

  • Sherwood Lollar, B., Lacrampe-Couloume, G., Voglesonger, K., Onstott, T. C., Pratt, L. M., & Slater, G. F. (2008). Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons. Geochimica et Cosmochimica Acta, 72(19), 4778–4795.

    Google Scholar 

  • Stolper, D. A., Martini, A. M., Clog, M., Douglas, P. M., Shusta, S. S., Valentine, D. L., et al. (2015). Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochimica et Cosmochimica Acta, 161, 219–247.

    Google Scholar 

  • Tabani, P., Hermand, G., Delay, J., & Mangeot, A. (2010). Geoscientific Data Acquisition and management System (SAGD) of the Andra Meuse/Haute-Marne research center. In Andra (Ed.), Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, 4th International Meeting, Nantes, France, March 29–April 1st, 2010, Abstracts (pp. 253–254).

    Google Scholar 

  • Thury, M., & Bossart, P. (1999). The Mont Terri rock laboratory, a new international research project in a Mesozoic shale formation, Switzerland. Engineering Geology, 52(3), 347–359.

    Google Scholar 

  • Tournassat, C., Vinsot, A., Gaucher, E. C., & Altmann, S. (2015). Chapter 3: Chemical conditions in clay-rocks. In C. Tournassat, C. I. Steefel, I. C. Bourg, & F. Bergaya (Eds.), Developments in clay science (Vol. 6, pp. 71–100). Amsterdam: Elsevier.

    Google Scholar 

  • Trémosa J., Hadi J., Claret F., Tournassat C., & Vinsot A. (2015). Kinetic experiments in order to determine the rate of oxygen consumption by the Callovo-Oxfordian Argillaceous rock. In Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, 6th International Meeting, Brussels, Belgium, March 23–26, 2015, Abstracts (pp. 116–117).

    Google Scholar 

  • Van Loon, L. R., & Mibus, J. (2015). A modified version of Archie’s law to estimate effective diffusion coefficients of radionuclides in argillaceous rocks and its application in safety analysis studies. Applied Geochemistry, 59, 85–94.

    Google Scholar 

  • Vinsot, A., Appelo, C. A. J., Cailteau, C., Wechner, S., Pironon, J., De Donato, P., et al. (2008). CO2 data on gas and pore water sampled in situ in the Opalinus Clay at the Mont Terri rock laboratory. Physics and Chemistry of the Earth, Parts A/B/C, 33, S54–S60.

    Google Scholar 

  • Vinsot, A., Appelo, C. A. J., Lundy, M., Wechner, S., Lettry, Y., Lerouge, C., et al. (2014). In situ diffusion test of hydrogen gas in the Opalinus Clay. Geological Society, London, Special Publications, 400(1), 563–578.

    Google Scholar 

  • Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1), 291–314.

    Google Scholar 

  • Zhang, T., & Krooss, B. M. (2001). Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure. Geochimica et Cosmochimica Acta, 65(16), 2723–2742.

    Google Scholar 

Download references

Acknowledgements

We appreciate the fruitful discussions with Andreas Gautschi, Christophe Tournassat, Urs Mäder, Elie Valcke, Nick Waber, Paul Wersin, Hans-Eike Gäbler, Ana Maria Fernandez, Jennifer McKelvie, Dani Traber, and many other partners during the Mont Terri geochemical meetings. We gratefully thank Gesine Lorenz, Thomas Fierz, Thierry Theurillat, Patrick Delage, and Philippe Tabani for their involvement in the realization of the experiments, Karen Fournier for English advice and Jacques Delay, Sarah Dewonck, Christophe Nussbaum, and Paul Bossart for their continuous support of the project. We warmly acknowledge Thomas Gimmi and Martin Mazurek for their very accurate reading of the manuscript. PC-C and/or HT experiments benefited from financial support by Andra (France), Nagra (Switzerland), CEN-SCK (Belgium), BGR (Germany), and NWMO (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Vinsot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vinsot, A. et al. (2018). Natural gas extraction and artificial gas injection experiments in Opalinus Clay, Mont Terri rock laboratory (Switzerland). In: Bossart, P., Milnes, A. (eds) Mont Terri Rock Laboratory, 20 Years. Swiss Journal of Geosciences Supplement, vol 5. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70458-6_20

Download citation

Publish with us

Policies and ethics